欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ANSI AGMA 6034-B92-1992 Practice for Enclosed Cylindrical Wormgear Speed Reducers and Gearmotors.pdf

    • 资源ID:430552       资源大小:2.21MB        全文页数:40页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ANSI AGMA 6034-B92-1992 Practice for Enclosed Cylindrical Wormgear Speed Reducers and Gearmotors.pdf

    1、ANSI/AGMA 6034-B92Revision of ANSI/AGMA 6034-A87Reaffirmed July 2010American National StandardPractice for EnclosedCylindrical Wormgear SpeedReducers and GearmotorsANSI/AGMA6034-B92iiPractice for Enclosed Cylindrical Wormgear Speed Reducers and GearmotorsAGMA 6034-B92(Revision of 6034-A87)Approval o

    2、f an American National Standard requires verification by ANSI that the requirements for dueprocess, consensus, and other criteria for approval have been met by the standards developer.Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantialagreement has been

    3、reached by directly and materially affected interests. Substantial agreement meansmuch more than a simple majority, but not necessarily unanimity. Consensus requires that all views andobjections be considered, and that a concerted effort be made toward their resolution.The use of American National S

    4、tandards is completely voluntary; their existence does not in any respectpreclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing,or using products, processes, or procedures not conforming to the standards.The American National Standards Institute does

    5、 not develop standards and will in no circumstances give aninterpretation of any American National Standard. Moreover, no person shall have the right or authority toissue an interpretation of an American National Standard in the name of the American National StandardsInstitute. Requests for interpre

    6、tation of this standard should be addressed to the American GearManufacturers Association.CAUTION NOTICE: AGMA Standards are subject to constant improvement, revision, or withdrawal asdictated by experience. Any person who refers to any AGMA Technical Publication should be sure that thepublication i

    7、s the latest available from the Association on the subject matter.Tables or other self-supporting sections may be quoted or extracted in their entirety. Credit lines should read:Extracted from AGMA 6034-B92, Practice for Enclosed Cylindrical Wormgear Speed Reducers andGearmotors with the permission

    8、of the publisher, the American Gear Manufacturers Association, 1500 KingStreet, Suite 201, Alexandria, Virginia 22314.Approved February 7, 1992Reaffirmed March 1999American National Standards Institute, Inc.ABSTRACTThis standard gives a method for rating and design of specific enclosed cylindrical w

    9、ormgear reducers andgearmotors at speeds not greater than 3600 rpm or mesh sliding velocities not more than 6000 ft/min (30 m/s).It contains power, torque and efficiency equations with guidance on component design, thermal capacity,service factor selection, lubrication, and self-locking features of

    10、wormgears. Annexes are supplied on servicefactors and user recommendations.Copyright 1992 by American Gear Manufacturers AssociationPublished byAmerican Gear Manufacturers Association1500 King Street, Suite 201, Alexandria, Virginia 22314ISBN: 1-55589-576-XiiiContentsPageForeword v1 Scope1.1 Applica

    11、bility 1.1.2 Exceptions 1.1.3 System considerations 1.1.4 References 1.2 Symbols and terminology 1.3 Rating3.1 Rating for standard materials and construction 2.3.2 Discussion of wear rating formula 33.3 Power formula 33.4 Empirical factors 5.3.5 Torque at wormgear 53.6 Efficiency 5.3.7 Life 53.8 Spe

    12、cial construction 5.4 Component design4.1 Loading 144.2 Housing design 144.3 Bearings, bolting, keys, and shafting 14.4.4 Special seals and breathers 14.5 Thermal rating5.1 Sump temperature 15.5.2 Auxiliary cooling 155.3 Thermal rating determination 155.4 Special considerations 15.6 Reducer rating6.

    13、1 No-load losses 156.2 Multiple reductions 15.6.3 Spur, helical, and spiral bevel gearing 166.4 Momentary overloads 167 Selection and service factors7.1 Equivalent input power 16.7.2 Service factors 167.3 Operating conditions 16.8 Lubrication8.1 Lubrication recommendations 17.8.2 Synthetic gear lubr

    14、icants 178.3 Mild extreme pressure lubricants 19.8.4 High speed operation 198.5 Temperature limitations 19.ivContents (cont)Page8.6 Oil levels 19.8.7 Lubrication maintenance 198.8 Lubricants for the food and drug industry 209 Self-locking9.1 Self-locking static condition 209.2 Lead angle 20.9.3 Stat

    15、ic friction angle 20.9.4 Testing 20.Tables1 Symbols used in equations 22 Ratio correction factors, Cm6.3 Velocity factors, Cv74 Metric velocity factors, Cv105 Coefficient of friction, m 11.6 Coefficient of friction, m (metric) 137 Overhung load factors 148 AGMA lubricant number recommendationsfor en

    16、closed cylindrical wormgear drives 18.Figures1 Materials factor,Cs, for center distances 3.0 in (76 mm) 4.2 Maximum materials factor,Cs, for center distances 3.0 in (76 mm) BRONZE GEAR WITH WORM HAVING SURFACE HARDNESS OF 58 Rc MIN IO00 I i i i i 1 i i i i i i i i i i i i 3 i in I I I I I I I I CALl

    17、bN I I I A. .-a. r*al m-r A IlT 800 1-i I i i i i i i Y C;HtC;K I-ItiUHt 1 HIWJ USE THE LOWER OF / THE TWO VALUES 3 0.5 1.0 C:TER DISTANCET:NCHES 2.5 3.0 12 20 30 40 50 60 70 CENTER DISTANCE - mm Figure 2 - Maximum materials factor, CS , for center distances o.o-20.9 ?l.O-21.9 22.0-22.9 23.0-23.9 24

    18、.0-24.9 2x-25.9 26.0-26.9 27.0-27.9 28.0-28.9 29.0-29.9 30.0 0 0.6500 0.5300 0.4240 0.3435 0.2915 0.2602 0.2369 0.2182 0.2020 0.1888 0.1770 0.1665 0.1578 0.1500 0.1420 0.1350 0.1294 0.1231 0.1174 0.1120 0.1073 0.1033 0.0995 0.0962 0.0931 0.0901 0.0873 0.0849 0.0829 0.0813 0.0798 0.1 0.2 0.3 0.4 0.5

    19、0.6 0.7 0.8 0.9 0.6412 0.6256 0.6130 0.6010 0.5890 0.5770 0.5652 0.5530 0.5408 0.5185 0.5078 0.4970 0.4854 0.4747 0.4640 0.4540 0.4437 0.4340 0.4150 0.4050 0.3962 0.3886 0.3809 0.3730 0.3650 0.3570 0.3501 0.3368 0.3300 0.3230 0.3180 0.3130 0.3083 0.3033 0.2984 0.2945 0.2876 0.2843 0.2807 0.2774 0.27

    20、44 0.2714 0.2685 0.2655 0.2631 0.2576 0.2546 0.2517 0.2497 0.2467 0.2448 0.2428 0.2408 0.2389 0.2349 0.2330 0.2310 0.2290 0.2270 0.2251 0.2231 0.2211 0.2202 0.2162 0.2143 0.2130 0.2113 0.2100 0.2084 0.2064 0.2045 0.2025 0.2000 0.1990 0.1976 0.1966 0.1950 0.1940 0.1927 0.1918 0.1900 0.1879 0.1860 0.1

    21、850 0.1840 0.1830 0.1820 0.1801 0.1791 0.1781 0.1760 0.1742 0.1732 0.1723 0.1720 0.1703 0.1694 0.1684 0.1674 0.1655 0.1645 0.1636 0.1620 0.1616 0,.1607 0.1597 0.1587 0.1580 0.1568 0.1558 0.1549 0.1540 0.1539 0.1530 0.1520 0.1510 0.1500 0.1490 0.1480 0.1470 0.1460 0.1460 0.1450 0.1440 0.1430 0.1420 0

    22、.1410 0.1400 0.1390 0.1390 0.1380 0.1380 ol370 0.1360 0.1360 0.1350 0.1340 0.1336 0.1331 0.1325 0.1319 0.1313 0.1307 0.1300 0.1288 0.1282 0.1275 0.1269 0.1262 0.1256 0.1249 0.1243 0.1237 0.1225 0.1219 0.1213 0.1207 0.1202 0.1196 0.1190 0.1184 0.1179 0.1169 0.1164 0.1159 0.1153 0.1147 0.1142 0.1136 0

    23、.1130 0.1125 0.1115 0.1110 0.1105 0.1100 0.1095 0.1090 0.1086 0.1081 0.1077 0.1069 0.1065 0.1061 0.1057 0.1053 0.1049 0.1045 0.1041 0.1037 0.1029 0.1025 0.1021 0.1017 0.1014 0.1010 0.1006 0.1002 0.0998 0.0992 0.0989 0.0986 0.0982 0.0979 0.0976 0.0972 0.0969 0.0966 0.0959 0.0956 0.0952 0.0949 0.0946

    24、0.0943 0.0940 0.0937 0.0934 0.0928 0.0925 0.0922 0.0919 0.0916 0.0913 0.0910 0.0907 0.0904 0.0898 0.0895 0.0892 0.0889 0.0886 0.0883 0.0881 0.0878 0.0875 0.0870 0.0868 0.0865 0.0862 0.0860 0.0858 0.0855 0.0853 0.0851 0.0847 0.0845 0.0843 0.0841 0.0839 0.0837 0.0835 0.0833 0.0831 0.0827 0.0826 0.0824

    25、 0.0823 0.0821 0.0820 0.0818 0.0816 0.0815 0.0812 0.0810 0.0809 0.0807 0.0805 0.0804 0.0802 0.0801 0.079s - - - - - - - - - C, for velocities 0 - 30 m/s 10 ANSVAGMA 6034-B92 Table 5 - Coefficient of friction, p Velocity range (ftlmin) p for velocities 0 - 359 Wmin 0 1 2 3 4 5 6 7 8 9 Q-9 0.1500 0.11

    26、50 0.1110 0.1070 0.1030 0.0990 0.0970 0.0950 0.0940 0.0920 lo-19 0.0900 0.0890 0.0880 0.0870 0.0860 0.0850 0.0840 0.0830 0.0820 0.0810 20-29 0.0800 0.0792 0.0786 0.0779 0.0772 0.0765 0.0758 0.0751 0.0744 0.0737 30-39 0.0730 0.0726 0.0722 0.0718 0.0714 0.0711 0.0707 0.0703 0.0699 0.0695 40-49 0.0691

    27、0.0687 0.0684 0.0680 0.0676 0.0673 0.0669 0.0665 0.0661 0.0658 50-59 0.0654 Cl.0651 0.0647 0.0644 0.0640 0.0637 0.0634 0.0630 0.0627 0.0623 60-69 0.0620 0.0618 0.0616 0.0614 0.0612 0.0610 0.0608 0.0606 0.0604 0.0602 m-79 0.0600 0.0598 0.0596 0.0594 0.0592 0.0590 0.0588 0.0586 0.0584 0.0582 80-89 0.0

    28、580 0.0578 0.0576 0.0574 0.0572 0.0570 0.0568 0.0566 0.0564 0.0562 go-99 0.0560 0.0558 0.0556 0.0554 0.0552 0.0550 0.0548 0.0546 0.0544 0.0542 100-l 09 0.0540 0.0539 0.0538 0.0537 0.0536 0.0535 0.0534 0.0533 0.0532 0.0531 110-119 0.0530 0.0528 0.0527 0.0526 0.0525 0.0524 0.0523 0.0522 0.0521 0.0520

    29、120-l 29 0.0519 0.0518 0.0517 0.0516 0.0515 0.0514 0.0513 0.0512 0.0511 0.0510 130-139 0.0509 0.0507 0.0506 0.0505 0.0504 0.0503 0.0502 0.0501 0.0500 0.0499 140-l 49 0.0498 0.0497 0.0496 0.0495 0.0494 0.0493 0.0492 0.0491 0.0490 0.0489 150-l 59 0.0488 0.0486 0.0485 0.0484 0.0483 0.0482 0.0481 0.0480

    30、 0.0479 0.0478 160-169 0.0477 0.0476 0.0475 0.0474 0.0473 0.0472 0.0471 0.0470 0.0469 0.0468 170-l 79 0.0467 0.0465 O.Q464 03463 0.0462 0.0461 0.0460 0.0459 0.0458 0.0457 180-l 89 0.0456 0.0455 0.0454 0.0453 0.0452 0.0451 0.0450 0.0449 0.0448 0.0447 190-l 99 0.0446 O. s I c 5 5 I , I 1 , 1 1 i 1 4 5

    31、 6 7 8 9 0.0340 0.0340 0.0339 0.0339 0.0338 0.0338 0.0336 0.0336 0.0335 0.0335 0.0335 0.0335 0.0333 0.0333 0.0332 0.0332 0.0331 0.0331 0.0329 0.0329 0.0328 0.0328 0.0327 0.0327 0.0325 0.0325 0.0324 0.0324 0.0324 0.0324 0.0322 0.0321 0.0321 0.0321 0.0321 0.0321 0.0319 0.0319 0.0318 0.0318 0.0317 0.03

    32、17 0.0316 0.0316 0.0315 0.0315 0.0314 0.0314 p-0313 0.0313 0.0312 0.0312 0.0311 0.0311 0.0309 0.0309 0.0308 0.0308 0.0308 0.0308 0.0306 0.0306 0.0305 0.0305 0.0305 0.0305 0.0303 0.0303 0.0302 0.0302 0.0301 0.0301 0.0300 0.0300 0.0299 0.0299 0.0298 0.0298 0.0297 0.0297 0.0296 0.0296 0.0295 0.0295 0.0

    33、287 0.0286 0.0282 0.028C 0.0278 0.0276 0.0266 0.0265 0.0263 0.0261 0.0259 0.0257 0.0249 0.0248 0.0246 0.024 0.0242 0.0242 0.0235 0.0234 0.0233 0.0231 0.023C 0.0228 0.0223 0.0222 0.0221 0.022c 0.0219 0.0218 0.0214 0.0213 0.0212 0.0211 0.021c 0.0209 0.0205 0.0204 0.0203 0.020: 0.0202 0.0202 0.0197 0.0

    34、196 0.0196 0.0195 0.0194 0.0193 0.0190 0.0189 0 0189 0.018E 0.0187 0.0186 0.0184 0.0183 0.0183 0.018: 0.0182 0.0181 0.0178 0.0177 0.0177 0.017c 0.017E 0.0175 0.0173 0.0173 0.0173 0.017; 0.0172 0.0172 0.0169 0.0169 0.0169 0.0165 0.016rhing _ Transmitted Torque Pitch Radius of Mounted Member The weigh

    35、t of the mounted member should be added vectorially to the overhung load, calculated as shown above. The result becomes the total overhung load. This calculated overhung load shall not exceed the allowable overhung load as determined in 4.1.1,4.1.2, and 4.1.3. 4.1.5 Special considerations When an “a

    36、s cast” pinion is mounted on the output shaft, or a cut pinion is run with an as cast” gear, due consideration shall be given to the dynamic disturbance resulting from this type of gear tooth action. In these cases, higher overhung load factors may be required. Table 7 - Overhung load factors Drive

    37、type Factor Single or multiple chain 1.00 Timing belt 1.00 Cut pinion run with cut gear 1.25 Single or multiple vee belt 1.50 Flat belt 2.50 Variable pitch pulley 3.50 Other types Consult drive manufacturer 4.2 Housing design The housing may be of the commonly used designs, provided it is sufficient

    38、ly rigid to maintain shaft positions in substantial alignment under maximum allowable loading. 4.3 Bearings, bolting, keys, and shafting These components shall be designed in accordance with the following. 4.3.1 Basis for component design Component design is to be based on loading as specified in 4.

    39、1, with due consideration for momentary or starting loads. 4.3.2 Design values Refer to ANSI/AGMA 6001-C88 for general design guidelines. These guidelines do not preclude a more detailed analysis, if desired. NOTE - Allowable design values for bolting, shafting, keys, and bearings are modified for t

    40、he permissible peak loading of 300 percent allowed for wormgearing, versus200percentforothertypes of gearing (see 6.4). 4.4 Special seals and breathers It is recognized that when units are applied to certain industries, special seals and breathers should be considered for units applied in dusty and

    41、corrosive atmospheres such as chemical plants, cement mills, and taconite processing plants. It is also recommended that moisture barrier seals be considered for units which are to be subjected to severe moisture or vapor-laden atmospheres. Enclosed gearing in wet locations and subject to direct or

    42、indirect water washdown, such as in the paper and food industries, generally requires extra protection. 14 ANSUAGMA 6034-B92 5 Thermal rating The thermal capacity is the powera unit will transmit continuously without exceeding the temperature in 5.1. The thermal rating is normally determined by the

    43、manufacturer. It is applied only when the me- chanical power is higher than the thermal rating, and no cooling provisions are made. NOTE - Service factors are not to be applied to the transmitted load for determining thermal capacity limitations. 5.1 Sump temperature The thermal ratings are based on

    44、 an operating sump temperature rise of 100F (56%) above ambient. The maximum sump temperature is not to exceed 200F (93%). 5.2 Auxiliary cooling When insufficient thermal capac-ky exists, the oil may be cooled by a number of methods including fans, an external sump, or internal and external coolers.

    45、 5.3 Thermal rating determination The thermal rating may be determined by testing, applying the following qualifications: - Oil level. The unit is to operate at rated speed and load, filled to design oil level with the recommended lubricant; - Run-in. The determination of oil temperature rise is to

    46、be made afterthe unit has been “run-in”; - Operation. The unit is to be operated continu- ously until a steady condition of oil temperature is assured; - Point of measurement. The temperature of the lubricant is to be measured at a point approxi- mately one-half the worm outside diameter from the mi

    47、d-point of the worm threads, if the worm is below or beside the gear, and 0.5 in (12.7 mm) from the gear outside diameter when the worm is mounted above the gear. The point of measure- ment shall also be sufficiently below the static oil level to ensure proper determination of the bulk oil temperatu

    48、re. 5.4 Special considerations In applying the reducer thermal ratings determined above, special consideration should be given to factors which affect rates of heat transfer, because they can greatly increase or decrease the thermal rating. Factors that could decrease thermal rating include operatio

    49、n in an enclosed space, operation in a very dusty atmosphere where fine material covers the gear unit, operation in a high temperature ambient such as near motors, turbines, or hot processing equipment, operation at high altitudes, and operation in the presence of solar or radiant energy. Factors that could increase thermal rating include mounting on a significant heat sink, low ambient temperatures, operation in a continuous flow of air, intermittent loading, or variable load conditions. 6 Reducer rating Reducer rating is the power that can be transmitted without exceedi


    注意事项

    本文(ANSI AGMA 6034-B92-1992 Practice for Enclosed Cylindrical Wormgear Speed Reducers and Gearmotors.pdf)为本站会员(livefirmly316)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开