欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    AGMA 97FTM7-1997 Bending Load on Internal Gears of Planetary Gear Sets《行星齿轮组内齿轮的弯曲载荷》.pdf

    • 资源ID:422425       资源大小:445.53KB        全文页数:12页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    AGMA 97FTM7-1997 Bending Load on Internal Gears of Planetary Gear Sets《行星齿轮组内齿轮的弯曲载荷》.pdf

    1、97FTM7 Bending Load on Internal Gears of Planetary Gear Sets by: Prof. Heinz Linke, and Dipt-lng. Claudia Jahn, Technische Universitat Dresden TECHNICAL PAPER Bending Load on Internal Gears of Planetary Gear Sets Prof. Heinz Linke and DipI.-Ing. Claudia Jahn, Technische UniversitiH Dresden The state

    2、ments and opinions contajned herein arc those of the author and should not be construed as an official action or opinion of the American Gear Manufacturers Association. Abstract As compared to external toathings, the design fundamentals and standards for proving the load-carrying capacity of interna

    3、l toothings have been little developed. Mostly only insufficiently considered is the influence of stress in the toothed gear rim, which is essential in almost all cases. Also for the theoretical borderline case of the infinitely thick toothed gear rim some design data are too inaccurate, since they

    4、are not based on the actual tooth fillet and on precise notch-stress calculations. Even larger are the deviations in elastically designed toothed gear rims. This paper is to present results of invstigations for the more precise determination of stress in the tooth root or the toothed gear rim of int

    5、ernal toothings specifically for their use in planetary gearings. Proposals for the practical calculation are included. The results of calculation are confirmed by tests. At first, the considerations concern borderline cases of load in an infinitely thick toothed gear rim, whose mounting in the casi

    6、ng has no influence on the stresses examined here (very elastic connecting elements). On this basis, the case of the inner toothed gear rim with a cylindrical connection contour is treated (the internal too thing is positioned only on a part of the hollow cylinder). The influence of the connection c

    7、ontours on the stress as compared with the version with a ground contour as successfully taken into account by approximation relations. The assumptions and results of calculation were well determined by measurements done on a planetary gearing. The stress calculations are carried out by a locus-depe

    8、ndent superposition of the stress components resulting from the radial force and the tangential force. Proceeding from the moment curve and longitudinal-force curve determined in the tooth gear rim, the local stress in the tooth gullet is determined with the aid of the boundary element method. The p

    9、ractical application of the findings is facilitated by generalized stress concentration factors, which are newly calculated for internal toothings. To sum up, it can be stated that the contribution gives an insight into general connections and proposes a refined method for practical usc. Copyright 1

    10、997 American Gear Manufacturers Association 1500 King Street, Suite 201 Alexandria, Virginia, 22314 November, 1997 ISBN: 1-55589-701-0 BENDING LOAD ON INTERNAL GEARS OF PLANETARY GEAR SETS Prof. H. Linke; Dipl.-Ing. Cl. Jahn Dresden University of Technology, Germany INTRODUCTION I) In gear units wit

    11、h internal gears the geometrical main dimensions can be calculated according to the same relations as for external gears. The number of teeth of the internal gears and the centrere distance have to be used with negative sign 1, 2. Compared with gear units with external gears, however, there are pe c

    12、uliarities. These are first the kinds or possibilities of interferences. Some do not occur in gear units with external gears. Others are pos sible only in extreme cases. Instead of the tooth tip thickness, as in external gears, in internal gears the space width at the tooth root is one of the limit

    13、criteria. In gear units with internal gears the flank contact pressure is lower than in gears with external gears of the same absolute length of diame ters and the same loading. This is due to the concavo-convex pairing of the tooth profiles as against the otherwise convexoconvex pairing. 11 often s

    14、eems that the to“oth root load in internal gears is generally lower than in external gears. This impression is caused by the greater tooth root thickness on internal gears. It is overlooked here that at fatigue stressing (continuous loading) also the tooth root notches have an essential influence. T

    15、he root fillets of the internal gears are usually smaller than the root fillets of the exter nal gears of the same module and with the same absolute number of teeth. Moreover, in the toothed rim of internal gears there is a con s!derable stress. Its decisive share is the bending stress. The stress i

    16、n the toothed rim may lead to a considerable reduction of load capacity. This contribution deals with this problem of the tooth root load or too thed rim load. Continuous loading is assumed, i. e. a number of stress cycles N 106 First the method of the general proof is briefly pre sented. I) Symbols

    17、 at end of paper This is followed by a concrete calculation for the possible limiting cases. They constitute the highest and the lowest load capacity. The maximum value of load capacity results if the stress in the toothed rim is neglected. This is tantamount to assuming a very great toothed rim thi

    18、ckness. A minimum value of load capacity is obtained if it is as sumed that the defonnation of the toothed rim with internal gears to be calculated is not hindered by the mounting of the toothed rim in the casing or on other components. The toothed rim is thus assumed to be a free ring (figure I). T

    19、he torque is applied or absorbed by an evenly distributed loading on the periphery. -Figure 1 Elastically designed toothed rims; negligible influence of the support The calculation of these limiting cases is followed by statements con cerning the approximated consideration of the influence of the mo

    20、un ting of the toothed rim with adjacent cylindrical shells (figure 2). Finally, experimental investigations are referred to. , r Figure 2 Elastic toothed rim with cylindrical adjacent contour; sup porting effect The objective of this paper is to point out influences and dependencies and to present

    21、an efficient approximation method for the ca1culationu sing pes. 2 GENERAL METHOD FOR PROVING THE LOAD CAPA CITY Due to the greater elasticity of internal gears, in general the stress distribution is considerably different from that for external gears (figu re 3). As it is shown in principle in figu

    22、re 3, there is an essential stress not only during the tooth contact. On internal gears the whole gear periphery or the whole cycle (I Y. It bY 1,/ r; plimit (e, ,O) -t - I -t - -1 -2 nurrber of teeth zn tip factor for internal gears cao.Jale:l t.n tha 00 4 pressure angle on = 20Q -: /, I i I V , ,

    23、i! , , , , I I ! ! ! I I I 10 -io intemal gear: root fillet radius Pf I mn = 0,25 tooth dedendum hr I mn = 1,25 Figure 8b The concentration factor Y FS for internal gears; root fillet radius Qlmn = 0,25 cos (* -II) 2 SID (*) sin(* - !II) 2 SID (*) _ p (IR,I - hK ) (!. 2n p - ili)sgnl ifW;?: 0, then

    24、sgnftl “ +1; if W .!_ other quantities !S ISO 6336 8 -6 Mb(F“,) YSMb (tab. 2) od iMb(FB)!) “ 2 fSMb b SR , _ 6 Mb(F,B,FIB) Krn KFll = K A KlFClnKFn 0n(,Mb(F,B,FIB)I) - 2 YSMb b SR Orn(IMb(Fb)I) “ 6 Mb(Fb) KFUl 2 YSMb b SR Note The stress distribution factors of the loaded tooth (KFal, KFI) differ fr

    25、om the factos of the neighboring teeth (KFctll KF!3l1) and from the factors outside the zone of contact (KaJl! K(3111) For the present, KFal “ KFuIl KF!31 “ KF!3Il and KFcdll = KFf31l! “ 1 may be applied as a rough approx1matlon Tab!e 2 Stress concentration factors for the stress shares at the 60 ta

    26、ngent basic equation: stress concentration factor Y SFt _ .!E!L _ O,5 with: a 0,290 b-2,727 c 1,092 d - 0,4188 3.3 Tooth Root Stress with the Rim Influence in the Case of an Adiacent Contour which cannot be neglected The investigations start from a model with cylindrical shells which are symmetrical

    27、ly adjacent to the toothed rim (figure 2). As against the freely deformable ring treated in section 3.2, lower stresses result due to the support. With the aid of calculations according to the FEM supporting factors f. could be determined on an empirical basis. They approximately represent the reduc

    28、tion of stresses compared with the freely deforma ble ring. 7 stress concentration factor Y 5Mb with: a - 0,147 b=-1,094 c 1,220 d - 0,3908 The equations (table 1) for detennining the local stress proportions according to eqs. (11) to (14) have to be modified in order to take the supporting effect i

    29、nto account (Table 3). The supporting factors influence only the share of the local stresses which is caused by the toothed rim. At stress due to the tangential force component (Ft) this is included in the second addend of the equation O“I(Ft in table 3. The supporting factors are given in the equat

    30、ions (15) to (J 9). T able quatiOns or e ennmmg D d I 3 E e oca s resses, s ar h es Ih I I t stress 01 (F,) FtKA YFaYSaYtYp + = -bm“ FtKFl YF.(YS“ - Ys.) /r(FI) Y,Y, f.-.-bm“ 6 M,(F,.) fl(F Ib“ 250 NIrrm e.: ho.:; bsee fiQ.re2 4t:;:;:=e:=j:l:;:;:;: Zo - fl.ITi:lao“ct teath ct tro prien o.ttff W 40 S

    31、J 60 70 60 ro 00 70 6:) SJ 40 30 k + ai:Ion:im IlC1Jdicrlfacto“ tangent angle in degrees dtlrsyrrtrds see tS06336 61 Figure 13 Comparison of experimental results with calculated values according to the set-up stated References I 2J 3 4 5 6 7 8J DIN 3960: Begriffe und BestimmungsgroBen fUr Stirnrader

    32、 (Zylinderr1ider) und Stirnradpaare (Zylinderpaare) mit Evolven tenverzahnung. 1987 Linke, H: Stirnradverzahnung. Munchen, Wien: Hanser 1996 Jahn, Cl.: Untersuchungen zur ZahnfuJ3tragfahigkeitsberech nung bei lnnenverzahnungen. Als Dissertation an der FakulUit Maschinenwesen der TU Dresden eingereic

    33、hte Arbeit, 1997 Derzhavetz, 1: Getriebe def Energiemaschinen. Verlag Mas chinostrojenige, Leningrad 1985 A GMA 908-B89: Geometry factors for determining the pitting resistance and bending strength of spur, helical and her ringbone gear teeth. 1989 Linke, H und Borner, J: Diffence in the Local Stres

    34、s of the Gear Toot root based on Hobbing Cutters and Pinion Cutters. AGMA FALL Techn. Meeting. 1992 Linke, H und Borner, J: Prazisierte Ergebnisse zur Span nungskonzentration am ZahnfuB. Dresden: International Con ference on Gears, April 1996; VDIBerichte 1230 ISO 6336: Calculation of load capacity

    35、of spur and helical gears, 1996 SYMBOLS b face width da tip diameter e fn tooth gap Fb tooth force Fr radial component of the tooth force Ft tangential component of the tooth force f. supporting factors hCS thickness of the adjacent contour hK distance of the applied load to the neutral rim section

    36、hf tooth dedendum K A KFr, KFa, KFp = Kv stress distribution factors (as ISO 6336 8) k addendum reduction factor L, Q, M reactions in the rim lcs damping length Mb bending moment of the rim modul number of planet gears radius of the external reaction load radius of the neutral rim section safety fac

    37、tor tooth root thickness (calculated on the 60-tangent) rim thickness applied torque resistance moment addendum modification factor 10 an p “F “F(-!) apE O“PEm “Fm Qf eFn i Index I II III B c t tooth style factor tip factor stress concentration factors with rim influence stress concentrations factor

    38、 without rim influence over lap factor number of teeth pressure angle helix angle peak to peak amplitude (tooth root stress) fatigue strength pulsating fatigue strength fatigue strength in dependent on the mean stress mean stress root fillet radius Icalculated on the 600tangent) angle coordinate loaded tooth neighboring tooth place with the maximum tensile stress occurring offset by a larger angle highest point of single-tooth contact compressive side tensile side other symbols see ISO 6336 8J


    注意事项

    本文(AGMA 97FTM7-1997 Bending Load on Internal Gears of Planetary Gear Sets《行星齿轮组内齿轮的弯曲载荷》.pdf)为本站会员(bonesoil321)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开