欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    BS PD CEN TR 15281-2006 Guidance on Inerting for the Prevention of Explosions《爆炸预防用惰化导则》.pdf

    • 资源ID:397258       资源大小:1,022KB        全文页数:56页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    BS PD CEN TR 15281-2006 Guidance on Inerting for the Prevention of Explosions《爆炸预防用惰化导则》.pdf

    1、PUBLISHED DOCUMENT PD CEN/TR 15281:2006 Guidance on Inerting for the Prevention of Explosions ICS 13.230 PD CEN/TR 15281:2006 This Published Document was published under the authority of the Standards Policy and Strategy Committee on 30 June 2006 BSI 2006 ISBN 0 580 47233 7 National foreword This Pu

    2、blished Document is the official English language version of CEN/TR 15281:2006. The UK participation in its preparation was entrusted to Technical Committee FSH/23, Fire precautions in industrial and chemical plant, which has the responsibility to: A list of organizations represented on this subcomm

    3、ittee can be obtained on request to its secretary. Cross-references The British Standards which implement international or European publications referred to in this document may be found in the BSI Catalogue under the section entitled “International Standards Correspondence Index”, or by using the “

    4、Search” facility of the BSI Electronic Catalogue or of British Standards Online. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a Published Document does not of itself confer immunity from le

    5、gal obligations. aid enquirers to understand the text; present to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep UK interests informed; monitor related international and European developments and promulgate them in the UK. Summ

    6、ary of pages This document comprises a front cover, an inside front cover, the CEN/TR title page, pages 2 to 53 and a back cover. The BSI copyright notice displayed in this document indicates when the document was last issued. Amendments issued since publication Amd. No. Date CommentsTECHNICALREPORT

    7、 RAPPORTTECHNIQUE TECHNISCHERBERICHT CEN/TR15281 May2006 ICS13.230 EnglishVersion GuidanceonInertingforthePreventionofExplosions AtmosphresexplosiblesGuidedelinertagepourla prventiondesexplosions ThisTechnicalReportwasapprovedbyCENon8November2005.IthasbeendrawnupbytheTechnicalCommitteeCEN/TC305. CEN

    8、membersarethenationalstandardsbodiesofAustria,Belgium,Cyprus,CzechRepublic,Denmark,Estonia,Finland,France, Germany,Greece,Hungary,Iceland,Ireland,Italy,Latvia,Lithuania,Luxembourg,Malta,Netherlands,Norway,Poland,Portugal, Romania, Slovakia,Slovenia,Spain,Sweden,SwitzerlandandUnitedKingdom. EUROPEANC

    9、OMMITTEEFORSTANDARDIZATION COMITEUROPENDENORMALISATION EUROPISCHESKOMITEEFRNORMUNG ManagementCentre:ruedeStassart,36B1050Brussels 2006CEN Allrightsofexploitationinanyformandbyanymeansreserved worldwideforCENnationalMembers. Ref.No.CEN/TR15281:2006:E2 Contents Page Foreword4 1 Scope 5 2 Normative ref

    10、erences 5 3 Terminology and abbreviations .6 3.1 Terminology .6 3.2 Abbreviations.7 4 Inert gases8 5 Influence of the oxygen concentration on explosive atmospheres .9 5.1 General9 5.2 Gas and vapour explosions. 10 5.3 Dust explosions 13 5.4 Hybrid mixtures. 15 5.5 Mists. 15 5.6 Influence of process

    11、parameters 15 6 Methods of Inerting. 18 6.1 General. 18 6.2 Pressure swing inerting . 19 6.3 Vacuum-swing inerting 19 6.4 Flow-through inerting. 20 6.5 Displacement inerting 21 6.6 Maintaining inert conditions 21 7 Inerting systems . 23 7.1 General introduction 23 7.2 Inert gas supply 23 7.3 Monitor

    12、ing and control system . 24 7.4 Methods . 25 8 Reliability. 27 8.1 Demands for safety critical equipment 27 8.2 Inerting systems . 28 9 Personnel and environmental protection. 28 10 Information for use . 29 Annex A (informative) Oxygen monitoring technology 30 Annex B (informative) Equations for pre

    13、ssure-swing inerting 33 Annex C (informative) Calculations for flow-through inerting.36 Annex D (informative) Addition of solids to an inerted vessel using a double valve arrangement 38 Annex E (informative) Addition of solids down a charge-chute to an open vessel 41 Annex F (informative) Examples o

    14、n inerting specific items of process equipment 45 Annex G (informative) Prevention of diffusion of air down vent pipes. 50 Bibliography. 52 CEN/TR 15281:20063 Figures Figure 1 Influence of inert gas on explosion limits of methane (according to 32, Figure 28).10 Figure 2 Flammability diagram for air-

    15、propane-nitrogen (according to 8)11 Figure 3 Triangular flammability diagram for fuel-oxygen-nitrogen 12 Figure 4 Influence of oxygen concentration on the explosion pressure of brown coal (according to 7).13 Figure 5 Influence of oxygen concentration on the rate of explosion pressure rise of brown c

    16、oal (according to 7).14 Figure 6 Influence of oxygen concentration on maximum explosion pressure for brown coal (according to 29).14 Figure 7 Effect of temperature on ignition sensitivity of dusts (according to 7)16 Figure 8 Temperature influence on limiting oxygen concentration (according to 29).17

    17、 Figure 9 Influence of pressure on inerting brown coal (according to 29).17 Figure 10 Pressure influence on amount of inert gas required for inerting propane (according to 32, Figure 40) .18 Figure 11 Specification of safe limits for control .25 Figure D.1 Example of addition of solids for an inerte

    18、d vessel using a double value arrangement 38 Figure F.1 Agitated pressure filter/dryer .45 Figure F.2 Top discharge centrifuge46 Figure F.3 Inverting filter horizontal basket centrifuge .47 Figure F.4 Pinned disc grinding mill48 Figure F.5 Horizontal paddle dryer 49 Figure G.1 Value of exponent N in

    19、 equation 18 for various pipe diameters .51 Tables Table B.1 Typical rates of pressure rise for vacuum systems35 Table B.2 Selected values of k = C p /C vfor various inert gases.35 CEN/TR 15281:20064 Foreword This Technical Report (CEN/TR 15281:2006) has been prepared by Technical Committee CEN/TC 3

    20、05 “Potentially explosive atmospheres Explosion prevention and protection”, the secretariat of which is held by DIN. CEN/TR 15281:20065 1 Scope Inerting is a measure to prevent explosions. By feeding inert gas into a system which is to be protected against an explosion, the oxygen content is reduced

    21、 below a certain concentration until no explosion can occur. The addition of sufficient inert gas to make any mixture non-flammable when mixed with air (absolute inerting) is only required in rare occasions. The requirements for absolute inerting will be discussed. Inerting may also be used to influ

    22、ence the ignition and explosion characteristics of an explosive atmosphere. The guidance given on inerting is also applicable to prevent an explosion in case of a fire. The following cases are not covered by the guideline: admixture of an inert dust to a combustible dust; inerting of flammable atmos

    23、pheres by wire mesh flame traps in open spaces of vessels and tanks; fire fighting; avoiding an explosive atmosphere by exceeding the upper explosion limit of a flammable substance. Inerting which is sufficient to prevent an explosion is not a protective measure to prevent fires, self-ignition, exot

    24、hermic reactions or a deflagration of dust layers and deposits. 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced documen

    25、t (including any amendments) applies. EN 1127-1:1997, Explosive atmospheres Explosion prevention and protection Part 1: Basic concepts and methodology. EN 14034-4, Determination of explosion characteristics of dust clouds Part 4: Determination of the limiting oxygen concentration LOC of dust clouds.

    26、 prEN 14756, Determination of the limiting oxygen concentration (LOC) for gases and vapours. EN 50104, Electrical apparatus for the detection and measurement of oxygen Performance requirements and test methods. IEC 61508-1, Functional safety of electrical/electronic/programmable electronic safety-re

    27、lated systems Part 1: General requirements (IEC 61508-1:1998 + Corrigendum 1999) IEC 61508-2, Functional safety of electrical/electronic/programmable electronic safety-related systems Part 2: Requirements for electrical/electronic/programmable electronic safety- related systems (IEC 61508- 2:2000).

    28、IEC 61508-3, Functional safety of electrical/electronic/programmable electronic safety-related systems Part 3: Software requirements (IEC 61508-3:1998 + Corrigendum 1999). IEC 61511-1, Functional safety Safety instrumented systems for the process industry sector Part 1: Framework, definitions, syste

    29、m, hardware and software requirements (IEC 61511-1:2003 + corrigendum 2004). IEC 61511-2, Functional safety Safety instrumented systems for the process industry sector Part 2: Guidelines for the application of IEC 61511-1 (IEC 61511-2:2003). IEC 61511-3, Functional safety Safety instrumented systems

    30、 for the process industry sector Part 3: Guidance for the determination of the required safety integrity levels (IEC 61511-3:2003 + corrigendum 2004). CEN/TR 15281:20066 3 Terminology and abbreviations For the purposes of this Technical Report, the terms and definitions given in EN 1127-1:1997 and t

    31、he following apply. 3.1 Terminology 3.1.1 inerting replacement of atmospheric oxygen in a system by a non-reactive, non-flammable gas, to make the atmosphere within the system unable to propagate flame 3.1.2 absolute inerting absolutely inerted mixture is one which does not form a flammable atmosphe

    32、re when mixed with air in any proportion because the ratio of inert to fuel is sufficiently high 3.1.3 Limiting Oxygen Concentration (LOC) experimentally determined oxygen concentration which will not allow an explosion in a fuel/air/inert gas mixture NOTE It is a characteristic which is specific fo

    33、r a given fuel/inert gas combination. The determination should be in accordance with pr EN 14756 for gases and vapours and EN 14034-4 for dusts respectively. 3.1.4 Maximum Allowable Oxygen Concentration (MAOC) concentration which should not be exceeded in the system which has to be protected, even w

    34、ith anticipated upsets or operating errors NOTE It is set using a margin below the limiting oxygen concentration. This margin should consider variations in process conditions which might deviate from the experimental conditions. 3.1.5 explosion abrupt oxidation or decomposition reaction producing an

    35、 increase in temperature, pressure, or in both simultaneously EN 1127-1:1997, 3.6 3.1.6 Lower Explosion Limit (LEL) lower limit of the explosion range 3.1.7 Upper Explosion Limit (UEL) upper limit of the explosion range 3.1.8 explosion range range of concentration of a flammable substance in air wit

    36、hin which an explosion can occur 3.1.9 Trip Point (TP) oxygen concentration at which the oxygen monitoring instrumentation initiates a shut down procedure to make the equipment safe and prevent the atmosphere inside from becoming flammable CEN/TR 15281:20067 3.1.10 Set Point (SP) oxygen concentratio

    37、n at which the oxygen monitoring instrumentation controls the flow, pressure or quantity of inert gas NOTE A suitable allowance for variation of flows, temperatures and pressure fluctuations should be made to ensure that when the oxygen level reaches the set point, the control system can prevent the

    38、 oxygen level from rising to the trip point under normal operation and foreseeable disturbances. 3.1.11 safety margin difference between the trip point and the maximum allowable oxygen concentration 3.1.12 inert gas gas that neither reacts with oxygen nor with the gas, vapour or dust 3.1.13 pressure

    39、-swing inerting reduction of oxidant concentration in a closed system by pressurising with inert gas and venting back to atmospheric pressure 3.1.14 vacuum-swing inerting reduction of oxidant concentration by the evacuation of a closed system, and the restoration to atmospheric pressure by the admis

    40、sion of inert gas 3.1.15 flow-through inerting replacement of an oxidant by a continuous flow of inert gas into a system which is vented to atmosphere 3.1.16 displacement inerting displacement of an oxidant by an inert gas of a significantly different density, where significant mixing does not take

    41、place 3.2 Abbreviations B bulk density of powder C 0initial oxygen concentration (fractional) C boxygen concentration in air in powder (usually 0,21) (fractional) C foxygen concentration after flow purging (fractional) C iconcentration of oxygen in inert gas C mmaximum allowable oxygen concentration

    42、 C noxygen concentration after n purges C pspecific heat of inert gas at constant pressure C ststoichometric composition of the fuel in air C rrequired maximum fractional oxygen concentration in vessel C vspecific heat of inert gas at constant volume D vent diameter, inches F safety factor for flow

    43、purging f void fraction h distance from end of vent, ft J rate of pressure rise in a vacuum system, mbar min -1CEN/TR 15281:20068 K weight of 1 bag of powder k ratio of specific heats of gases, C p /C vLOC limiting oxygen concentration M mean partical size, m MAOC maximum allowable concentration MOC

    44、 Cminimum oxygen for combustion with carbon dioxide as diluent MOC Nminimum oxygen for combustion with nitrogen as diluent m molecular weight of purge gas N exponent in Husas 1964 equation dependent on vent diameter n number of cycles or additions P 1lower purge pressure (absolute) P 2upper purge pr

    45、essure (absolute) Q purge gas flow-rate R upper/lower purge pressure ratio (absolute), i.e. P 2 /P 1S void fraction of bulk powder SP set point TP trip point t time t* time interval between start of charging of successive bags U vessel ullage volume V system volume V 0volume of oxygen in vessel at s

    46、tart V* volume of oxygen in each bag V nvolume of oxygen in vessel after n thbag charged V sbulk volume of solids being charged V vvolume of double valve arrangement v purge gas superficial velocity, ft/sec v/v volume/volume x required oxygen content % v/v NOTE Where units have specific units, then

    47、these should be used. Where no units are shown, the variables are either dimensionless or any consistent set of units may be applied to the equation. 4 Inert gases Inerting may be achieved by using a non-flammable gas which will neither react with a given fuel nor with oxygen. This has to be conside

    48、red carefully. Some material may react with steam, carbon dioxide or even nitrogen under some conditions. For example, molten lithium metal reacts with nitrogen. The most commonly used inert gases are: a) Nitrogen Nitrogen may either be received from a commercial supplier with an appropriate purity or may be generated from ambient air at technical quality by on-site facilities. b) Carbon dioxide Carbon dioxide may be received from a commercial supplier at an appropriate purity. CEN/TR 15281:20069 c) Steam Steam with pressures over 3 bar might be used as an inert


    注意事项

    本文(BS PD CEN TR 15281-2006 Guidance on Inerting for the Prevention of Explosions《爆炸预防用惰化导则》.pdf)为本站会员(hopesteam270)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开