欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Talk online at http---pantheon.yale.edu-~subir.ppt

    • 资源ID:389609       资源大小:980.50KB        全文页数:36页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Talk online at http---pantheon.yale.edu-~subir.ppt

    1、Talk online at http:/pantheon.yale.edu/subir,Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland),Understanding correlated electron systems by a classification of Mott insulators,Colloquium article in Reviews

    2、 of Modern Physics, July 2003, cond-mat/0211005.Annals of Physics 303, 226 (2003),Strategy for analyzing correlated electron systems (cuprate superconductors, heavy fermion compounds ),Start from the point where the break down of the Bloch theory of metals is complete-the Mott insulator.Classify gro

    3、und states of Mott insulators using conventional and topological order parameters.Correlated electron systems are described by phases and quantum phase transitions associated with order parameters of Mott insulator and the “orders” of Landau/BCS theory. Expansion away from quantum critical points al

    4、lows description of states in which the order of Mott insulator is “fluctuating”.,Outline Order in Mott insulators Class A: Compact U(1) gauge theory: collinear spins, bond order and confined spinons in d=2 Class B: Z2 gauge theory: non-collinear spins, visons, topological order, and deconfined spin

    5、ons Class A in d=2 The cuprates Class A in d=3 Deconfined spinons and quantum criticality in heavy fermion compounds Conclusions,Class A: Compact U(1) gauge theory: collinear spins, bond order and confined spinons in d=2,I. Order in Mott insulators,Magnetic order,Class A. Collinear spins,I. Order in

    6、 Mott insulators,Magnetic order,Class A. Collinear spins,Order specified by a single vector N. Quantum fluctuations leading to loss of magnetic order should produce a paramagnetic state with a vector (S=1) quasiparticle excitation.,Key property,Class A: Collinear spins and compact U(1) gauge theory,

    7、Key ingredient: Spin Berry Phases,Write down path integral for quantum spin fluctuations,Class A: Collinear spins and compact U(1) gauge theory,Key ingredient: Spin Berry Phases,Write down path integral for quantum spin fluctuations,Class A: Collinear spins and compact U(1) gauge theory,S=1/2 square

    8、 lattice antiferromagnet with non-nearest neighbor exchange,Include Berry phases after discretizing coherent state path integral on a cubic lattice in spacetime,The area of the triangle is uncertain modulo 4p, and the action is invariant under,These principles strongly constrain the effective action

    9、 for Aam which provides description of the large g phase,Simplest large g effective action for the Aam,This theory can be reliably analyzed by a duality mapping. d=2: The gauge theory is always in a confining phase and there is bond order in the ground state. d=3: A deconfined phase with a gapless “

    10、photon” is possible.,N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990). K. Park and S. Sachdev, Phys. Rev. B 65, 220405 (2002).,I. Order in Mott insulators,Paramagnetic states,Class A. Bond order and spin excitons in d=2,N. Read a

    11、nd S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).,S=1/2 spinons are confined by a linear potential into a S=1 spin exciton,Spontaneous bond-order leads to vector S=1 spin excitations,A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett. 89, 247201 (2002),Bond order in a frustr

    12、ated S=1/2 XY magnet,g=,First large scale numerical study of the destruction of Neel order in a S=1/2 antiferromagnet with full square lattice symmetry,Class B: Z2 gauge theory: non-collinear spins, visons, topological order, and deconfined spinons,I. Order in Mott insulators,Magnetic order,Class B.

    13、 Noncollinear spins,(B.I. Shraiman and E.D. Siggia, Phys. Rev. Lett. 61, 467 (1988),A. V. Chubukov, S. Sachdev, and T. Senthil Phys. Rev. Lett. 72, 2089 (1994),I. Order in Mott insulators,Paramagnetic states,Class B. Topological order and deconfined spinons,D.S. Rokhsar and S. Kivelson, Phys. Rev. L

    14、ett. 61, 2376 (1988) N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991); R. Jalabert and S. Sachdev, Phys. Rev. B 44, 686 (1991); X. G. Wen, Phys. Rev. B 44, 2664 (1991). T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000).,Number of valence bonds cutting line is conserved modulo 2 this

    15、 is described by the same Z2 gauge theory as non-collinear spins,RVB state with free spinons,P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974).,I. Order in Mott insulators,Paramagnetic states,Class B. Topological order and deconfined spinons,D.S. Rokhsar and S. Kivelson, Phys. Rev. Lett. 61, 2376

    16、 (1988) N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991); R. Jalabert and S. Sachdev, Phys. Rev. B 44, 686 (1991); X. G. Wen, Phys. Rev. B 44, 2664 (1991). T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000).,Number of valence bonds cutting line is conserved modulo 2 this is described

    17、 by the same Z2 gauge theory as non-collinear spins,RVB state with free spinons,P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974).,I. Order in Mott insulators,Class B. Topological order and deconfined spinons,S3,(A) North pole,(B) South pole,x,y,(A),(B),Vortices associated with p1(S3/Z2)=Z2 (viso

    18、ns) have gap in the paramagnet. This gap survives doping and leads to stable hc/e vortices at low doping.,N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000). S. Sachdev, Physical Review B 45, 389 (1992) N. Nagaosa and P.A. Lee, Physica

    19、l Review B 45, 966 (1992),Paramagnetic states,II. Evidence cuprates are in class A,Competing order parameters,1. Pairing order of BCS theory (SC),Bose-Einstein condensation of d-wave Cooper pairs,Doping a paramagnetic bond-ordered Mott insulator,systematic Sp(N) theory of translational symmetry brea

    20、king, while preserving spin rotation invariance.,S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991).,Mott insulator with bond-order,T=0,II. Doping Class A,A phase diagram,Pairing order of BCS theory (SC) Collinear magnetic order (CM) Bond order (B),S. Sachdev and N. Read, Int. J. Mod. Phys.

    21、B 5, 219 (1991). M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999); M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. B 62, 6721 (2000); M. Vojta, Phys. Rev. B 66, 104505 (2002).,Vertical axis is any microscopic parameter which suppresses CM order,Evidence cuprates are in class A,Evidence cupra

    22、tes are in class A,Neutron scattering shows collinear magnetic order co-existing with superconductivity,J. M. Tranquada et al., Phys. Rev. B 54, 7489 (1996). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999). S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Re

    23、v. B 63, 172501 (2001).,Evidence cuprates are in class A,Neutron scattering shows collinear magnetic order co-existing with superconductivityProximity of Z2 Mott insulators requires stable hc/e vortices, vison gap, and Senthil flux memory effect,S. Sachdev, Physical Review B 45, 389 (1992) N. Nagaos

    24、a and P.A. Lee, Physical Review B 45, 966 (1992) T. Senthil and M. P. A. Fisher, Phys. Rev. Lett. 86, 292 (2001). D. A. Bonn, J. C. Wynn, B. W. Gardner, Y.-J. Lin, R. Liang, W. N. Hardy, J. R. Kirtley, and K. A. Moler, Nature 414, 887 (2001). J. C. Wynn, D. A. Bonn, B. W. Gardner, Y.-J. Lin, R. Lian

    25、g, W. N. Hardy, J. R. Kirtley, and K. A. Moler, Phys. Rev. Lett. 87, 197002 (2001).,Evidence cuprates are in class A,Neutron scattering shows collinear magnetic order co-existing with superconductivityProximity of Z2 Mott insulators requires stable hc/e vortices, vison gap, and Senthil flux memory e

    26、ffectNon-magnetic impurities in underdoped cuprates acquire a S=1/2 moment,Effect of static non-magnetic impurities (Zn or Li),J. Bobroff, H. Alloul, W.A. MacFarlane, P. Mendels, N. Blanchard, G. Collin, and J.-F. Marucco, Phys. Rev. Lett. 86, 4116 (2001).,Inverse local susceptibilty in YBCO,7Li NMR

    27、 below Tc,A.M Finkelstein, V.E. Kataev, E.F. Kukovitskii, G.B. Teitelbaum, Physica C 168, 370 (1990).,Spatially resolved NMR of Zn/Li impurities in the superconducting state,Evidence cuprates are in class A,Neutron scattering shows collinear magnetic order co-existing with superconductivityProximity

    28、 of Z2 Mott insulators requires stable hc/e vortices, vison gap, and Senthil flux memory effectNon-magnetic impurities in underdoped cuprates acquire a S=1/2 moment,Evidence cuprates are in class A,Neutron scattering shows collinear magnetic order co-existing with superconductivityProximity of Z2 Mo

    29、tt insulators requires stable hc/e vortices, vison gap, and Senthil flux memory effectNon-magnetic impurities in underdoped cuprates acquire a S=1/2 momentTests of phase diagram in a magnetic field (talk by E. Demler, Microsymposium MS IV, May 28, 11:40),E. Demler, S. Sachdev, and Ying Zhang, Phys.

    30、Rev. Lett. 87, 067202 (2001).,E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, 067202 (2001).,100,b,Vortex-induced LDOS of Bi2Sr2CaCu2O8+d integrated from 1meV to 12meV,J. Hoffman E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (20

    31、02).,Our interpretation: LDOS modulations are signals of bond order of period 4 revealed in vortex haloSee also: S. A. Kivelson, E. Fradkin, V. Oganesyan, I. P. Bindloss, J. M. Tranquada, A. Kapitulnik, and C. Howald, cond-mat/0210683.,C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik, Phys. Rev. B

    32、 67, 014533 (2003).,Spectral properties of the STM signal are sensitive to the microstructure of the charge order,Measured energy dependence of the Fourier component of the density of states which modulates with a period of 4 lattice spacings,Conclusions Two classes of Mott insulators: (A) Collinear

    33、 spins, compact U(1) gauge theory; bond order and confinements of spinons in d=2 (B) Non-collinear spins, Z2 gauge theory Doping Class A in d=2 Magnetic/bond order co-exist with superconductivity at low doping Cuprates most likely in this class. Theory of quantum phase transitions provides a description of “fluctuating order” in the superconductor. Class A in d=3 Deconfined spinons and quantum criticality in heavy fermion compounds (cond-mat/0209144 and cond-mat/0305193),


    注意事项

    本文(Talk online at http---pantheon.yale.edu-~subir.ppt)为本站会员(priceawful190)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开