欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Survival Analysis.ppt

    • 资源ID:389514       资源大小:144.50KB        全文页数:32页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Survival Analysis.ppt

    1、Survival Analysis,Key variable = time until some event,time from treatment to deathtime for a fracture to healtime from surgery to relapse,Censored observations,subjects removed from data set at some stage without suffering an event lost to follow-up or died from unrelated eventstudy period ends wit

    2、h some subjects not suffering an event,Example,Survival analysis uses information about subjects who suffer an event and subjects who do not suffer an event,Life Table,Shows pattern of survival for a group of subjects Assesses number of subjects at risk at each time point and estimates the probabili

    3、ty of survival at each point,Motion sickness data,N=21 subjects placed in a cabin and subjected to vertical motionEndpoint = time to vomit,Motion sickness data,14 survived 2 hours without vomiting 5 subjects vomited at 30, 50, 51, 82 and 92 minutes respectively 2 subjects requested an early stop to

    4、the experiment at 50 and 66 minutes respectively,Life table,Calculation of survival probabilities,pk = pk-1 x (rk fk)/ rkwhere p = probability of surviving to time kr = number of subjects still at riskf = number of events (eg. death) at time k,Calculation of survival probabilities,Time 30 mins : (21

    5、 1)/21 = 0.952Time 50 mins : 0.952 x (20 1)/20 = 0.905Time 51 mins : 0.905 x (18 1)/18 = 0.854,Kaplan-Meier survival curve,Graph of the proportion of subjects surviving against time Drawn as a step function (the proportion surviving remains unchanged between events),Survival Curve,Kaplan-Meier survi

    6、val curve,times of censored observations indicated by ticksnumbers at risk shown at regular time intervals,Summary statistics,Median survival timeProportion surviving at a specific time point,Survival Curve,Comparison of survival in two groups,Log rank testNonparametric similar to chi-square test,SP

    7、SS Commands,Analyse Survival Kaplan-MeierTime = length of time up to event or last follow-up Status = variable indicating whether event has occurredOptions plots - survival,SPSS Commands (more than one group),Factor = categorical variable showing groupingCompare factor choose log rank test,Example,R

    8、CT of 23 cancer patients11 received chemotherapyMain outcome = time to relapse,Chemotherapy example,Chemotherapy example,No chemotherapy Median relapse-free time = 23 weeks Proportion surviving to 28 weeks = 0.39Chemotherapy Median relapse-free time = 31 weeks Proportion surviving to 28 weeks = 0.61

    9、,The Cox model Proportional hazards regression analysis,Generalisation of simple survival analysis to allow for multiple independent variables which can be binary, categorical and continuous,The Cox Model,Dependent variable = hazardHazard = probability of dying at a point in time, conditional on sur

    10、viving up to that point in time= “instantaneous failure rate”,The Cox Model,Log hi(t) =logh0(t) + 1x1 + 2x2 + kxkwhere h0(t) = baseline hazardand x1 ,x2 , xk are covariates associated with subject i,The Cox Model,hi(t) = h0(t) exp 1x1 + 2x2 + kxkwhere h0(t) = baseline hazardand x1 ,x2 , xk are covar

    11、iates associated with subject i,The Cox Model,Interpretation of binary predictor variable defining groups A and B:Exponential of regression coefficient, b,= hazard ratio (or relative risk) = ratio of event rate in group A and event rate in group B = relative risk of the event (death) in group A comp

    12、ared to group B,The Cox Model,Interpretation of continuous predictor variable:Exponential of regression coefficient, b,refers to the increase in hazard (or relative risk) for a unit increase in the variable,The Cox Model,Model fitting:Similar to that for linear or logistic regression analysis Can us

    13、e stepwise procedures such as Forward Wald to obtain the best subset of predictors,The Cox model Proportional hazards regression analysis,Assumption:Effects of the different variables on event occurrence are constant over timeie. the hazard ratio remains constant over time,SPSS Commands,Analyse Surv

    14、ival Cox regressionTime = length of time up to event or last follow-up Status = variable indicating whether event has occurred Covariates = predictors (continuous and categorical) Options plots and 95% CI for exp(b),The Cox model,Check of assumption of proportional hazards (for categorical covariate):Survival curves Hazard functions Complementary log-log curvesFor each, the curves for each group should not cross and should be approximately parallel,


    注意事项

    本文(Survival Analysis.ppt)为本站会员(ideacase155)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开