欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    survey on non linear filtering methods - thequantization and .ppt

    • 资源ID:389511       资源大小:1.25MB        全文页数:36页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    survey on non linear filtering methods - thequantization and .ppt

    1、Comparative survey on non linear filtering methods : the quantization and the particle filtering approaches Afef SELLAMI,Chang Young Kim,Overview,Introduction Bayes filters Quantization based filters Zero order scheme First order schemes Particle filters Sequential importance sampling (SIS) filter S

    2、ampling-Importance Resampling(SIR) filter Comparison of two approaches Summary,Non linear filter estimators,Quantization based filters Zero order scheme First order schemesParticle filtering algorithms: Sequential importance sampling (SIS) filter Sampling-Importance Resampling(SIR) filter,Overview,I

    3、ntroduction Bayes filters Quantization based filters Zero order scheme First order schemes Particle filters Sequential importance sampling (SIS) filter Sampling-Importance Resampling(SIR) filter Comparison of two approaches Summary,Bayesian approach: We attempt to construct the nf of the state given

    4、 all measurements.PredictionCorrection,Bayes Filter,One step transition bayes filter equationBy introducint the operaters , sequential definition of the unnormalized filter nForward Expression,Bayes Filter,Overview,Introduction Bayes filters Quantization based filters Zero order scheme First order s

    5、chemes Particle filters Sequential importance sampling (SIS) filter Sampling-Importance Resampling(SIR) filter Comparison of two approaches Summary,Quantization based filters,Zero order scheme First order schemes One step recursive first order scheme Two step recursive first order scheme,Zero order

    6、scheme,QuantizationSequential definition of the unnormalized filter nForward Expression,Zero order scheme,Recalling Taylor Series,Lets call our point x0 and lets define a new variable that simply measures how far we are from x0 ; call the variable h = x x0. Taylor Series formulaFirst Order Approxima

    7、tion:,Introduce first order schemes to improve the convergence rate of the zero order schemes. Rewriting the sequential definition by mimicking some first order Taylor expansion:Two schemes based on the different approximation byOne step recursive scheme based on a recursive definition of the differ

    8、ential term estimator.Two step recursive scheme based on an integration by part transformation of conditional expectation derivative.,First order schemes,One step recursive scheme,The recursive definition of the differential term estimatorForward Expression,Two step recursive scheme,An integration b

    9、y part formulawherewhere,Comparisons of convergence rate,Zero order schemeFirst order schemes One step recursive first order schemeTwo step recursive first order scheme,Overview,Introduction Bayes filters Quantization based filters Zero order scheme First order schemes Particle filters Sequential im

    10、portance sampling (SIS) filter Sampling-Importance Resampling(SIR) filter Comparison of two approaches Summary,Particle filtering,Consists of two basic elements: Monte Carlo integrationImportance sampling,Importance sampling,Proposal distribution: easy to sample from,Original distribution: hard to s

    11、ample from, easy to evaluate,Importance weights,we want samples fromand make the following importance sampling identifications,Sequential importance sampling (SIS) filter,Proposal distribution,Distribution from which we want to sample,SIS Filter Algorithm,Sampling-Importance Resampling(SIR),Problems

    12、 of SIS: Weight DegenerationSolution RESAMPLING Resampling eliminates samples with low importance weights and multiply samples with high importance weights Replicate particles when the effective number of particles is below a threshold,Sampling-Importance Resampling(SIR),x,Sensor model,Update,Resamp

    13、ling,Prediction,Overview,Introduction Bayes filters Quantization based filters Zero order scheme First order schemes Particle filters Sequential importance sampling (SIS) filter Sampling-Importance Resampling(SIR) filter Comparison of two approaches Summary,Elements for a comparison,Complexity Numer

    14、ical performances in three state models: Kalman filter (KF) Canonical stochastic volatility model (SVM) Explicit non linear filter,Complexity comparison,Numerical performances,Three models chosen to make up the benchmark. Kalman filter (KF) Canonical stochastic volatility model (SVM) Explicit non li

    15、near filter,Kalman filter (KF),Both signal and observation equations are linear with Gaussian independent noises. Gaussian process which parameters (the two first moments) can be computed sequentially by a deterministic algorithm (KF),Canonical stochastic volatility model (SVM),The time discretizati

    16、on of a continuous diffusion model.State Model,Explicit non linear filter,A non linear non Gaussian state equation Serial Gaussian distributions SG()State Model,Numerical performance Results,Convergence teststhree test functions:Kalman filter: d=1,Numerical performance Results : Convergence rate imp

    17、rovement,Kalman filter: d=3,Numerical performance Results,Stochastic volatility model,Numerical performance Results,Non linear explicit filter,Conclusions,Particle methods do not suffer from dimension dependency when considering their theoretical convergence rate, whereas quantization based methods

    18、do depend on the dimension of the state space. Considering the theoretical convergence results, quantization methods are still competitive till dimension 2 for zero order schemes and till dimension 4 for first order ones. Quantization methods need smaller grid sizes than Monte Carlo methods to attain convergence regions,


    注意事项

    本文(survey on non linear filtering methods - thequantization and .ppt)为本站会员(hopesteam270)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开