欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    SUPOR- Precise and Scalable Sensitive User Input .ppt

    • 资源ID:389485       资源大小:712.18KB        全文页数:38页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    SUPOR- Precise and Scalable Sensitive User Input .ppt

    1、SUPOR: Precise and Scalable Sensitive User Input Detection for Android Apps,Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu Zhang, Guofei Jiang,Sensitive Data Disclosures,Local Storage,USENIX Security 2015,1,Disclosed to public,Hijacked/maliciously retrieved,8/14/15,Sensitive

    2、 Data,Existing work focused on sensitive data defined by certain API methods. Most of them are permission protected E.g., in Android, TelephonyManager.getDeviceId(),USENIX Security 2015,2,TaintDroidOSDI10, AndroidLeaksTRUST12, FlowDroidPLDI14,PiOSNDSS11,8/14/15,Sensitive User Inputs,USENIX Security

    3、2015,3,We are among the first to detect user inputs as sensitive sources in mobile apps. None of them are permission protected E.g., user id/password, credit card number,Insensitive,Sensitive,8/14/15,Example User Inputs Disclosures,EditText txtCN = findViewById(R.id.cardnum); String cnum = txtCN.get

    4、Text().toString(); ,EditText txtCM = findViewById(Rment); String comment = txtCM.getText().toString(); ,Web Server,HTTP,HTTP,USENIX Security 2015,4,8/14/15,Research Problems,How to systematically discover the input fields from an apps UI?How to identify which input fields are sensitive?How to associ

    5、ate the sensitive input fields to the corresponding variables in the apps that store their values?,USENIX Security 2015,5,8/14/15,Intuition,From the users perspective, if we can mimic how a user looks at the UIs, we can determine which input fields can contain sensitive data within the UI context.,U

    6、SENIX Security 2015,6,8/14/15,Feasibility,Render the statically defined UI layouts,USENIX Security 2015,7,Associate labels to input fields based on physical locations,8/14/15,USENIX Security 2015,8,SUPOR: Sensitive User inPut detectOR,8/14/15,Background - UI,USENIX Security 2015,9,Text Label,Input F

    7、ield,Input Hint,Widget,8/14/15,Background Layout File,A piece in an Android layout example.,USENIX Security 2015,10,Identifier,Interesting Attribute,8/14/15,Overview of SUPOR,USENIX Security 2015,11,Layout Analysis,Layout Parsing,UI Rendering,UI Sensitiveness Analysis,Privacy Analysis,Disclosure,Key

    8、words,Variable Binding,SUPOR,Vulnerability,App,8/14/15,Parsing Layout,USENIX Security 2015,12,We need to know which layout files contain input fields.,Is Sensitive User Input Detection Needed?,Layout file,layout contains input fields,layout doesnt contain input fields,8/14/15,Rendering UI,USENIX Sec

    9、urity 2015,13,Layout file A,Layout file B,Statically render layout files to UIs as users look at on smartphones via tools like ADT in Android.,8/14/15,Extracting Information,USENIX Security 2015,14,Collect information,Text Label Text: Card Number Coordinates: 16, 231, 109, 249 Input Field Hint: 15 o

    10、r 16 digit Coordinates: 16, 249, 464, 297,8/14/15,UI Sensitiveness Analysis,USENIX Security 2015,15,Sensitive Attributes in Layout Files,The Input Field is Sensitive,Yes,Sensitive Input Hint,Yes,Sensitive Text Label,The Input Field is Insensitive,No,No,15 or 16 digit MM - YYYY,No,Yes,Card number Exp

    11、iration date,Challenge: How to precisely associate the correlated text label to a given input field?,Enter Password,Comment,8/14/15,Associating Labels (1),Intuition: labels at different positions relative to the input field have different probabilities to be correlated.,USENIX Security 2015,16,Input

    12、 Field,Label,Input Field,Label,Input Field,Label,Input Field,Label,8/14/15,Associating Labels (2),Assign position-based weights based on empirical observations The smaller the weight, the closer the correlation,USENIX Security 2015,17,Input Field,0.8,2,4,8,8,9,9,10,8/14/15,Associating Labels (3),Geo

    13、metry-based correlation score computation,USENIX Security 2015,18,Label,Input Field (I),(x1, y1),(x2, y2),For each pixel (x,y) in a text label distance(I, x, y) * posWeight(I, x, y),Average the correlation score for the text label,8/14/15,Associating Labels (4),Find out the label with the smallest c

    14、orrelation score among all potential labels for a given input field,USENIX Security 2015,19,Correlation scores,8/14/15,Determining Sensitiveness (1),USENIX Security 2015,20,Sensitive Keywords Dataset,Card number,Expiration date,Comment,Matches?,Sensitive,Insensitive,Keyword matching approach,8/14/15

    15、,Yes,No,Determining Sensitiveness (2),Why is keyword matching approach effective?,USENIX Security 2015,21,We only analyze the most relevant text label,Small screen and short phrases or sentences,8/14/15,Binding Variables (1),USENIX Security 2015,22,Widget txtCN = findViewById(X); Data cnum = txtCN.g

    16、etText(); / use of “cnum”,Identifier: X,8/14/15,Binding Variables (2),Challenge: different widgets within one apps have the same identifier,USENIX Security 2015,23,txtInput1 = this.findViewById(input1);,txtInput2 = this.findViewById(input1);,8/14/15,Binding Variables (3),USENIX Security 2015,24,txtI

    17、nput1 = this.findViewById(input1);, layout: billing_information.xml, layout: search.xml,txtInput2 = this.findViewById(input1);,id/input1,Sensitive,Insensitive,this.setContentView(billing_information);,this.setContentView(search);,Sensitive,Insensitive,8/14/15,Implementation & Evaluation,Implemented

    18、for Android apps and built on DalysisCHEX CCS12, IBM WALA and ADT.Only input fields of type EditText are analyzed, i.e. other user inputs like checkbox are ignored.Implemented a sensitive user inputs disclosure detection system by combining SUPOR and static taint analysis16,000 apps were evaluated,U

    19、SENIX Security 2015,25,8/14/15,Evaluating UI Sensitiveness Analysis (1),9,653 apps (60.33%) contains input fields Performance: Average analysis time is 5.7 seconds for one app,USENIX Security 2015,26,8/14/15,Evaluating UI Sensitiveness Analysis (2),9,653 apps (60.33%) contains input fields Accuracy

    20、Manually examined 40 apps . 115 layouts are rendered and 485 input fields are analyzed. TP: sensitive user inputs are identified as sensitive FP: insensitive user inputs are identified as sensitive FN: sensitive user inputs are identified as insensitive,USENIX Security 2015,27,8/14/15,Causes for FN

    21、and FP,USENIX Security 2015,28,Insufficient context to identify sensitive keywords. False negative: “Answer” vs “Security Answer” False Positive: “Height” of an image file and for a human being,Inaccurate text label association False positive: e.g. the long sentence (with keyword “email”) is associa

    22、ted with the “Delivery Instructions” field,Input Field,Input Field,Text Label,8/14/15,Evaluating Disclosure Analysis,For all 16,000 apps,USENIX Security 2015,29,Manually examined 104 apps False positive rate is 8.7% Limitations of underlying taint analysis framework E.g. lack of accurate modeling of

    23、 arrays,Throughput: 11.1 apps/minute A cluster of 8 servers 3 apps are analyzed on each server in parallel,8/14/15,Case Studies (1),USENIX Security 2015,30,com.canofsleep.wwdiary3 input fields associated with labels “Weight”, “Height” and “Age” are identified sensitive.,com.nitrogen.androidThe 3 mar

    24、ked inputs fields are identified sensitive and their data are disclosed.,8/14/15,Case Studies (2),USENIX Security 2015,31,txtWeight = this.findViewById(R.id.edt_weight);,valWeight = txtWeight.getText().toString();,Log.i(“weight”, valWeight);,Source,Sink,Disclosure analysis based on SUPOR,Disclosure

    25、analysis based on existing approach which directly define certain APIs as sensitive sources.,Detected,Undetected,8/14/15,Conclusion,We study the possibility of detecting sensitive user inputs, an important yet mostly neglected sensitive source in mobile apps.,USENIX Security 2015,32,We propose SUPOR

    26、, among the first known approaches to detect sensitive user inputs with high recall and precision. Mimics from the users perspective by statically and scalably rendering the layout files. Leverages a geometry-based approach to precisely associated text labels to input fields. Utilizes textual analys

    27、is to determine the sensitiveness of the texts in labels.,We perform a sensitive user inputs disclosure analysis, with FP rate of 8.7%, to demonstrate the usefulness of SUPOR.,8/14/15,USENIX Security 2015,33,Thank You!Q & A,8/14/15,Related work,A lot of work focus on privacy disclosure problems on p

    28、redefined sensitive data sources in the phone.FlowDroid PLDI14, PiOS NDSS11, AAPL NDSS15,USENIX Security 2015,34,FlowDroid employs a limited form of sensitive input fieldspassword fields.PLDI14,AsDroid checks checks UI text to detect the contradiction between the expected behaviors and program behav

    29、iors.ICSE14,UIPicker uses supervised learning to collect sensitive keywords and corresponding layouts. It also uses the sibling elements in layout files as the description text for a widget.USENIX Security15,8/14/15,Keyword dataset construction,Crawl texts from apps resource filesAdapt NLP technique

    30、s to extract nouns and noun phrases from the top 5,000 frequent text lines.Manually inspect top frequent nouns and noun phrases to identify sensitive keywords.,8/14/15,USENIX Security 2015,35,Why not use XML structure to compute correlation scores?,Many developers defines relative positions of the w

    31、idgets, which are not what users perceive XML structure in this case does not guarantee that sibling widgets are physically close.,USENIX Security 2015,36,8/14/15,Why not use XML structure to compute correlation scores?,Some cases in real Android apps.,USENIX Security 2015,37,Input 1,Label 1,Input 2,Label 2,8/14/15,


    注意事项

    本文(SUPOR- Precise and Scalable Sensitive User Input .ppt)为本站会员(livefirmly316)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开