欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    复合函数求偏导.ppt

    • 资源ID:384965       资源大小:592.50KB        全文页数:28页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    复合函数求偏导.ppt

    1、复合函数求偏导,一、复合函数的链式法则 二、全微分形式不变性,一、复合函数的链式法则,设z=f(u,v)是变量u,v的函数,而u,v又是x,y的 函数,即 ,如果能构成z是x ,y的 二元复合函数,如何求出函数z对自变量x,y的偏导数呢?,定理8.5 设函数 在点(x,y)处有偏 导数,而函数z=f(u,v)在对应点(u,v)有连续偏导数,则 复合函数 在点(x,y)处的偏导数存在,且有下面的链式法则:,复合函数的结构图是,公式(1)给出z对x的偏导数是,公式(*)与结构图两者之间的对应关系是:偏导数是由两项组成的,每项又是两个偏导数的乘积,公式(*)的这两条规律,可以通过函数的结构图得到,即

    2、,(1)公式(*)的项数,等于结构图中自变量x到达z路径的个数.函数结构中自变量x到达z的路径有两条.第一条是 ,第二条是 ,所以公式(*)由两项组成.,(2)公式(*)每项偏导数乘积因子的个数,等于该条路 径中函数及中间变量的个数.如第一条路径 , 有一个函数z和一个中间变量u,因此,第一项就是两 个偏导数 与 的乘积.,复合函数结构虽然是多种多样,求复合函数的偏导数公式也不完全相同,但借助函数的结构图,运用上面的法则,可以直接写出给定的复合函数的偏导数的公式.这一法则通常形象地称为链式法则.,下面借助于函数的结构图,利用链式法则定出偏导数公式.,1、设z=f(u,v,w)有连续偏导数,而

    3、都有偏导数,求复合函数 的偏导数 .,由结构图看出自变量x到达z的路径有三条,因此 由三项组成.而每条路径上都有一个函数和一个中间变 量,所以每项是函数对中间变量及中间变量对其相应 自变量的偏导数乘积,即,同理可得到,,2.设函数w=f(u,v)有连续偏导数,而都有偏导数,求复合函数的偏导数 .,借助于结构图,可得,3.设函数w=f(u,v)有连续偏导数,而可导,则复合函数只是自变量x的函数, 求z对x的导数 .,可得,在这里,函数z是通过二元函数z=f(u,v)而成为x的一元复合函数.因此,z对x的导数 又称为z对x的全导数.对公式(5)应注意,由于z,u,v这三个函数都是x 的一元函数,故

    4、对x的导数应写成 ,而不能写成 .,4.设函数z=f(x,v)有连续偏导数, 有偏导数,求复合函数 的偏导数 .,自变量x到达z的路径有二条,第一路径上只有一个函数,即z是x的函数.第二路径上有两个函数z和v.自变量y到达z的路径只有一条,于是 的偏导数公式应是:,注意: 这里的 与 是代表不同的意义.其中 是将函数 中的y看作常量而对自变量x求偏导数,而 是将函数f(x,v)中的v看常量而对第一个位置变量x求偏导数,所以两者的含意不同,为了避免混淆,将公式(6)右端第一项写 ,而不写为 .,例1 设 求,解法1 得,解法2 对于具体的二元复合函数,可将中间变量u,v,用x,y代入,则得到,,

    5、z 是x,y二元复合函数,根据复合函数的链式法则,得,例2 设 ,其中f(u,v)为可微函数,求,解 令 ,可得,其中 不能再具体计算了,这是因为外层函数f 仅是抽象的函数记号,没有具体给出函数表达式.,例3 设 ,其中f(u,v,w)为可微函数,求,解 令 可得,例4 设 求,解 可得,在该例中,我们清楚看出 与 含意是不同的.,显然不等于 .,例5 设 求,解 得,例6 设z=f(x,xcosy),其中f(u,v)为可微函数,求,解 令v=xcosy,得,求复合函数的二阶偏导数,不需要新的方法和新的公式,只需把一阶偏导数看作一个新的函数,应用链式法则对它再求偏导数即可.,例7 设 ,求证:

    6、,证,由于x,y,z在函数中的地位是相同的,所以同样有,因此有,二、全微分形式不变性,与一元函数的微分形式不变性类似,多元函数全微分也有形式不变性.也就是说不论u,v是自变量还是中间变量,函数z=f(u,v)的全微分的形式是一样的.即,这个性质称为全微分的形式不变性.,事实上,设z=f(u,v)有连续偏导数,当u,v是自变量时,显然(7)式成立.,如果u,v是中间变量,即 ,且这两个函数具有连续偏导数,则复合函数,的全微分为,其中,将 代入上式,得,即,当u,v是中间变量时,(7)式也成立.这就证明了全微分形式不变性.,例如,,利用全微分形式不变性及全微分的四则运算公式,求函数的全微分会更简便些.,利用全微分形式不变性,比较容易地得出全微分的四则运算公式,,例8 求 的全微分及偏导数.,解,例9 设 ,其中f(u,v)有连续偏导数,求 及,解 设,


    注意事项

    本文(复合函数求偏导.ppt)为本站会员(livefirmly316)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开