欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Chapter 3- The Laplace Transform.ppt

    • 资源ID:379728       资源大小:773.50KB        全文页数:47页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Chapter 3- The Laplace Transform.ppt

    1、Chapter 3: The Laplace Transform,3.1. Definition and Basic Properties 。 Objective of Laplace transform- Convert differential into algebraic equations Definition 3.1: Laplace transforms.t. convergess, t : independent variables,1, Representation:,。Example 3.2:,2,Consider,3,* Not every function has a L

    2、aplace transform.In general, can not converge 。Example 3.1:,4, Definition 3.2.: Piecewise continuity (PC)f is PC on if there are finite pointss.t.and are finite,5,i.e., f is continuous on a, b except at finite points, at each of which f has finite one-sided limits,6,If f is PC on 0, k, then so is an

    3、dexists, Theorem 3.2: Existence off is PC onIfProof:,7,8,* Theorem 3.2 is a sufficient but not a necessarycondition., There may be different functions whose Laplace transforms are the samee.g., andhave the same Laplace transform Theorem 3.3: Lerchs Theorem Table 3.1 lists Laplace transforms of funct

    4、ions,9, Theorem 3.1: Laplace transform is linearProof: Definition 3.3:. Inverse Laplace transforme.g., Inverse Laplace transform is linear,10,3.2 Solution of Initial Value Problems Using Laplace Transform Theorem 3.5: Laplace transform off: continuous on: PC on 0, kThen, -(3.1),11,Proof:Let,12, Theo

    5、rem 3.6: Laplace transform of: PC on 0, kfor s 0, j = 1,2 , n-1,13,。 Example 3.3:From Table 3.1, entries (5) and (8),14,15, Laplace Transform of Integral,16,From Eq. (3.1),3.3. Shifting Theorems and Heaviside Function 3.3.1.The First Shifting Theorem Theorem 3.7: Example 3.6: Given,17, Example 3.8:,

    6、18,3.3.2. Heaviside Function and Pulses f has a jump discontinuity at a, ifexistand are finite but unequal Definition 3.4: Heaviside function,19,。 Shifting,20,。 Laplace transform of heaviside function,3.3.3 The Second Shifting Theorem Theorem 3.8:Proof:,21, Example 3.11:Rewrite,22, The inverse versi

    7、on of the second shifting theorem Example 3.13:,23,rewritten as,where,24,25,3.4. Convolution,26, Theorem 3.9: Convolution theoremProof:,27, Theorem 3.10: Exmaple 3.18,28, Theorem 3.11:Proof :, Example 3.19:,29,3.5 Impulses and Dirac Delta Function Definition 3.5: Pulse Impulse: Dirac delta function:

    8、,30,A pulse of infinite magnitude over an infinitely short duration, Laplace transform of the delta function Filtering (Sampling) Theorem 3.12: f : integrable and continuous at a,31,32,Proof:,33,by Hospitals rule, Example 3.20:,3.6 Laplace Transform Solution of Systems Example 3.22Laplace transformS

    9、olve for,34,Partial fractions decompositionInverse Laplace transform,35,3.7. Differential Equations with Polynomial Coefficient Theorem 3.13:Proof: Corollary 3.1:,36, Example 3.25:Laplace transform,37,Find the integrating factor,Multiply (B) by the integrating factor,38,Inverse Laplace transform,39,

    10、 Apply Laplace transform toalgebraic expression for YApply Laplace transform toDifferential equation for Y,40, Theorem 3.14: PC on 0, k,41, Example 3.26:Laplace transform-(A)-(B),42,Finding an integrating factor,Multiply (B) by ,43,In order to have,44,Formulas: Laplace Transform: Laplace Transform of Derivatives: Laplace Transform of Integral:,45,Shifting Theorems: Convolution:Convolution Theorem: ,46,47,


    注意事项

    本文(Chapter 3- The Laplace Transform.ppt)为本站会员(eveningprove235)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开