欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Chapter 1The Self-Reducibility TechniqueMatt Boutell and Bill .ppt

    • 资源ID:379635       资源大小:53.50KB        全文页数:14页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Chapter 1The Self-Reducibility TechniqueMatt Boutell and Bill .ppt

    1、Chapter 1 The Self-Reducibility Technique Matt Boutell and Bill Scherer CSC 486 April 4, 2001,Historical Perspective,Berman 1978: P=NP a tally set that is m-hard for NPMahaney 1982: P=NP a sparse set that is m-complete for NPOgiwara, Watanabe 1991: todays lecture,p,p,Theorem: If an NP btt-hard spars

    2、e set S, then P = NP.Technique: let L be an arbitrary language in NP. Then, using S and the reduction, we give a deterministic polynomial algorithm to decide L.,Proof Overview,p,An Alternate Characterization of the Class NP,A language LNP AP, polynomial p | x*, xL IFF (w)wp(|x|) x,wA.x = input w = w

    3、itness = certificate = accepting path: A = checking algorithm,Left Sets,The left set, denoted LeftA,p, is x,y | x* yp(|x|) (wp(|x|) w lex y x,wA.,Note that having the left set non-empty the existence of an accepting path.,Maximum Witnesses,The Maximum Witness for some input x, denoted wmax(x), is ma

    4、xy | yp(|x|) x,yA.Deciding xL Determining if wmax(x) is defined.(x*)(yp(|x|)x,yLeftA,p ylex wmax(x). (1.4),LeftA,p NP,LeftA,p NP (by guessing wmax(x), so since S is NP-hard, LeftA,p btt S via some function f.,p,What does btt mean?,Bounded truth table reductions, btt, are a type of reduction that use

    5、s a very weak form of oracle.Ak-ttB via some function f means that A = L(MB), where M is a deterministic polynomial machine that on input x precomputes up to k queries, asks them all in parallel, and uses a k-ary Boolean function to compute the output.v1 v2 v3 vk 0 0 0 0 Yes M: 0 0 0 1 No1 1 1 1 No,

    6、p,p,p,Back to the Proof,Let u be a pair x,y. Then with our reduction, uLeftA,p S satisfies f(u).Now, with query strings v1, v2, v3, vk, let (S(v1), S(v2), S(v3), S(vk) Yes, No; this line is a row in the truth table in our reduction to S.So f(u) is of the form , v1, v2, v3, vk.,Intervals,The trick we

    7、 will use is to generate a polynomially bounded list of candidates for wmax(x). Once this list is generated, we can use brute force computation to see if any of these candidates are in fact witnesses.We do this by keeping track of a set of pair-wise disjoint intervals in the range 0p(|X|)1p(|X|), st

    8、arting initially with the entire range.,The Interval Invariant,xL wmax(x)UII (1.5),Last Definition: Covering,Let 1, 2 be two collections of pair-wise disjoint intervals over p(|x|). Then 1 covers 2 with respect to x if:1) (I2) (J1)IJ 2) wmax(x) UI1 wmax(x) UI2,0,2,1,Facts With Covering,Let 1, 2, 3,

    9、4 be sets of pair-wise disjoint intervals over p(|x|). Then (all with respect to x):1) If the interval invariant holds for 1 and 2 is a cover of 1, it also holds for 2.2) If 2 covers 1 and 3 covers 2, then 3 covers 1.3) If 2 covers 1 and 4 covers 3, then 2U4 covers 1U3.,0,2,1,The Theorem, Restated,If an NP btt-hard sparse set S, then P = NP.,p,


    注意事项

    本文(Chapter 1The Self-Reducibility TechniqueMatt Boutell and Bill .ppt)为本站会员(arrownail386)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开