欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Chapter 18- Granitoid Rocks.ppt

    • 资源ID:379621       资源大小:1.15MB        全文页数:16页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Chapter 18- Granitoid Rocks.ppt

    1、Chapter 18: Granitoid Rocks,“Granitoids” (sensu lato): loosely applied to a wide range of felsic plutonic rocks Focus on non-continental arc intrusives Continental arcs covered in Chapter 17 Associated volcanics are common and have same origin, but are typically eroded away,Chapter 18: Granitoid Roc

    2、ks,A few broad generalizations: 1) Most granitoids of significant volume occur in areas where the continental crust has been thickened by orogeny, either continental arc subduction or collision of sialic masses. Many granites, however, may post-date the thickening event by tens of millions of years.

    3、 2) Because the crust is solid in its normal state, some thermal disturbance is required to form granitoids 3) Most workers are of the opinion that the majority of granitoids are derived by crustal anatexis, but that the mantle may also be involved. The mantle contribution may range from that of a s

    4、ource of heat for crustal anatexis, or it may be the source of material as well,Chapter 18: Granitoid Rocks,Figure 18.1. Backscattered electron image of a zircon from the Strontian Granite, Scotland. The grain has a rounded, un-zoned core (dark) that is an inherited high-temperature non-melted cryst

    5、al from the pre-granite source. The core is surrounded by a zoned epitaxial igneous overgrowth rim, crystallized from the cooling granite. From Paterson et al. (1992), Trans. Royal. Soc. Edinburgh. 83, 459-471. Also Geol. Soc. Amer. Spec. Paper, 272, 459-471.,Chapter 18: Granitoid Rocks,Table 18.1.

    6、Didier, J. and Barbarin (1991) The different type of enclaves in granites: Nomenclature. In J. Didier and B. Barbarin (1991) (eds.), Enclaves in Granite Petrology. Elsevier. Amsterdam, pp. 19-23.,Table 18.2. Representative Chemical Analyses of Selected Granitoid Types. From Winter (2001) An Introduc

    7、tion to Igneous and Metamorphic Petrology. Prentice Hall.,Figure 18.2. Alumina saturation classes based on the molar proportions of Al2O3/(CaO+Na2O+K2O) (“A/CNK”) after Shand (1927). Common non-quartzo-feldspathic minerals for each type are included. After Clarke (1992). Granitoid Rocks. Chapman Hal

    8、l.,Chapter 18: Granitoid Rocks,Figure 18.3. The Ab-Or-Qtz system with the ternary cotectic curves and eutectic minima from 0.1 to 3 GPa. Included is the locus of most granite compositions from Figure 11-2 (shaded) and the plotted positions of the norms from the analyses in Table 18-2. Note the effec

    9、ts of increasing pressure and the An, B, and F contents on the position of the thermal minima. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.,Chapter 18: Granitoid Rocks,Figure 18.4. MORB-normalized spider diagrams for the analyses in Table 18-2 . From Winter

    10、 (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.,Chapter 18: Granitoid Rocks,Figure 18-5. a. Simplified P-T phase diagram and b. quantity of melt generated during the melting of muscovite-biotite-bearing crustal source rocks, after Clarke (1992) Granitoid Rocks. Chapman H

    11、all, London; and Vielzeuf and Holloway (1988) Contrib. Mineral. Petrol., 98, 257-276. Shaded areas in (a) indicate melt generation. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.,Chapter 18: Granitoid Rocks,Chapter 18: Granitoid Rocks,Table 18.4. A Classification

    12、of Granitoid Rocks Based on Tectonic Setting. After Pitcher (1983) in K. J. Hs (ed.), Mountain Building Processes, Academic Press, London; Pitcher (1993), The Nature and Origin of Granite, Blackie, London; and Barbarin (1990) Geol. Journal, 25, 227-238. Winter (2001) An Introduction to Igneous and M

    13、etamorphic Petrology. Prentice Hall.,Table 18.4. A Classification of Granitoid Rocks Based on Tectonic Setting. After Pitcher (1983) in K. J. Hs (ed.), Mountain Building Processes, Academic Press, London; Pitcher (1993), The Nature and Origin of Granite, Blackie, London; and Barbarin (1990) Geol. Jo

    14、urnal, 25, 227-238. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.,Chapter 18: Granitoid Rocks,Figure 18.6. A simple modification of Figure 16-17 showing the effect of subducting a slab of continental crust, which causes the dip of the subducted plate to shallow a

    15、s subduction ceases and the isotherms begin to “relax” (return to a steady-state value). Thickened crust, whether created by underthrusting (as shown) or by folding or flow, leads to sialic crust at depths and temperatures sufficient to cause partial melting. Winter (2001) An Introduction to Igneous

    16、 and Metamorphic Petrology. Prentice Hall.,Chapter 18: Granitoid Rocks,Figure 18.7. Schematic cross section of the Himalayas showing the dehydration and partial melting zones that produced the leucogranites. After France-Lanord and Le Fort (1988) Trans. Roy. Soc. Edinburgh, 79, 183-195. Winter (2001

    17、) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.,Figure 18.8. Schematic models for the uplift and extensional collapse of orogenically thickened continental crust. Subduction leads to thickened crust by either continental collision (a1) or compression of the continental arc (a2

    18、), each with its characteristic orogenic magmatism. Both mechanisms lead to a thickened crust, and probably thickened mechanical and thermal boundary layers (“MBL” and “TBL”) as in (b) Following the stable situation in (b), either compression ceases (c1) or the thick dense thermal boundary layer is

    19、removed by delamination or convective erosion (c2). The result is extension and collapse of the crust, thinning of the lithosphere, and rise of hot asthenosphere (d). The increased heat flux in (d), plus the decompression melting of the rising asthenosphere, results in bimodal post-orogenic magmatis

    20、m with both mafic mantle and silicic crustal melts. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.,Chapter 18: Granitoid Rocks,Figure 18.9. Examples of granitoid discrimination diagrams used by Pearce et al. (1984, J. Petrol., 25, 956-983) with the granitoids of Table 18-2 plotted. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.,


    注意事项

    本文(Chapter 18- Granitoid Rocks.ppt)为本站会员(postpastor181)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开