欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Chapter 13Curve Fitting and Correlation.ppt

    • 资源ID:379574       资源大小:169.50KB        全文页数:35页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Chapter 13Curve Fitting and Correlation.ppt

    1、1,Chapter 13 Curve Fitting and Correlation,This chapter will be concerned primarily with two separate but closely interrelated processes: (1) the fitting of experimental data to mathematical forms that describe their behavior and (2) the correlation between different experimental data to assess how

    2、closely different variables are interdependent.,2,The fitting of experimental data to a mathematical equation is called regression. Regression may be characterized by different adjectives according to the mathematical form being used for the fit and the number of variables. For example, linear regre

    3、ssion involves using a straight-line or linear equation for the fit. As another example, Multiple regression involves a function of more than one independent variable.,3,Linear Regression,Assume n points, with each point having values of both an independent variable x and a dependent variable y.,4,P

    4、reliminary Computations,5,Best-Fitting Straight Line,6,Example 13-1. Find best fitting straight line equation for the data shown below.,7,Example 13-1. Continuation.,8,Example 13-1. Continuation.,9,Example 13-1. Continuation., x = 0:9; yapp = 1.9721*x + 4.1455; y = the 10 values of y; plot(x, yapp,

    5、x, y, o)The best-fit plot and the actual points are shown on the next slide.,10,11,MATLAB General Polynomial Fit, x = x1 x2 x3.xn; y = y1 y2 y3yn; p = polyfit(x, y, m) yapp = polyval(p, x) plot(x, yapp, x, y, o),12,Example 13-2. Rework Example 13-1 using MATLAB., x = 0:9; y = the 10 values of y; p =

    6、 polyfit(x, y, 1) p =1.9721 4.1455These are the same values obtained manually in Example 13-1.,13,Example 13-3. For data of previous two examples, obtain a 2nd degree fit.,Assume that the vectors x and y are still in memory. p = polyfit(x, y, 2) p =0.0011 1.9619 4.1591 yapp2 = polyval(p, x); plot(x,

    7、 yapp2, x, y, o)The results are shown on the next slide.,14,15,Example 13-4. Determine several polynomial fits for the function below., t = -1:0.05:1; y = sin(pi*t); plot(t, y)A plot of the function is shown on the next slide.,16,17,Example 13-4. Continuation.,(a) m = 1 p1 = polyfit(t, y, 1) p1 =0.8

    8、854 0.0000 yapp1 = polyval(p1, t); plot(t, yapp1, t, y, o)The results are shown on the next slide.,18,19,Example 13-4. Continuation.,(b) m = 2 p2 = polyfit(t, y, 2) p2 =0.0000 0.8854 -0.0000The polynomial is the same as for m = 1. This is due to the fact that the sine function is an odd function and

    9、 the coefficients of the terms with even degrees are zero.,20,Example 13-4. Continuation.,(c) m = 3 p3 = polyfit(t, y, 3) p3 =-2.8139 -0.0000 2.6568 0.0000 yapp3 = polyval(p3, t); plot(t, yapp3, t, y, o)The results are shown on the next slide. A fit for m = 4 would be the same as for m = 3.,21,22,Ex

    10、ample 13-5. Continuation.,m = 5 p5 = polyfit(t, y, 5) p5 =1.6982 0.0000 -4.7880 -0.0000 3.0990 0.0000 yapp5 = polyval(p5, t); plot(t, yapp5, t, y, o)The results are shown on the next slide.,23,24,Example 13-5. For data below, obtain a 2nd degree fit for the temperature T as a function of the distanc

    11、e x., x = 0:5; T = 71 76 86 100 118 140; p = polyfit(x,T,2) p =2.0893 3.4107 70.8214,25,Example 13-5. Continuation., x1 = 0:0.1:5; T1 = polyval(p, x1); plot(x1, T1, x, T, o)The results are shown on the next slide.,26,27,Multiple Linear Regression,28,Multiple Regression (Continuation),29,MATLAB Proce

    12、dure for Linear Regression,1. Form m column vectors each of length k representing the independent variables. x1 = x11 x12 x13x1k; x2 = x21 x22 x23x2k; . . xm = xm1 xm2 xm3.xmk;,30,MATLAB Procedure (Continuation),2. Form a column vector of length k representing the dependent variable y. y = y1 y2 y3.

    13、yk; 3. Form a rectangular matrix X of size k by m+1 as follows: X= ones(size(x1) x1 x2 xm; 4. Determine a column vector a of length m+1 by the command that follows: a = Xy,31,MATLAB Procedure (Continuation),5. The best-fit linear multiple regression formula is then given by Y = X*a;6. The maximum di

    14、fference between the actual data and the formula is Error_Maximum = max(abs(Y-y),32,Correlation,33,Correlation Coefficient,34,Implications of Correlation Coefficient,1. If C(x, y) = 1, the two variables are totally correlated in a positive sense.2. If C(x, y) = -1 , the two variables are totally correlated in a negative sense.3. If C(x, y) = 0, the two variables are said to be uncorrelated.,35,One Final Note,Correlation does not necessarily imply causation!,


    注意事项

    本文(Chapter 13Curve Fitting and Correlation.ppt)为本站会员(lawfemale396)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开