欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Capacity Planning in Client-Server Environments.ppt

    • 资源ID:379300       资源大小:579KB        全文页数:137页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Capacity Planning in Client-Server Environments.ppt

    1、Capacity Planning in Client/Server Environments,Daniel A. Menasc George Mason University Fairfax, VA 22030 USA menascecs.gmu.edu,Outline,Part I: Client/Server Systems Part II: Introduction to Capacity Planning Part III: A Capacity Planning Methodology for C/S Environments Part IV: Performance Predic

    2、tion Models for C/S Environments,Outline (continued),Part V: Advanced Predictive Models of C/S Systems Part VI: Case Study Bibliography,Part I: Client/Server (C/S) Systems,Definitions and Basic Concepts,ClientServerWork division between client and serverClient/Server communication,DB server,DB serve

    3、r,Definitions and basic concepts,Definitions and basic concepts: Client,Workstation with graphics and processing capabilities. Graphical User Interface (GUI) implemented at the client. Partial processing executed at the client.,Definitions and basic concepts: Server,Machine with much larger processi

    4、ng and I/O capacity than the client. Serves the various requests from the clients. Executes a significant portion of the processing and I/O of the requests generated at the client.,Work division between client and server,GUI,COMM.,COMM.,I/O,Pre & Post Process.,Processing,DB,Client,Server,communicati

    5、ons network,Interaction between client and server Remote Procedure Call (RPC),client,DB server,pre-proces- sing,post-proces- sing,server processing,execute_SQL(par1,par2,.),result_SQL(.),Part II: Introduction to Capacity Planning,Migration to C/S example: “downsizing” a claim processing application,

    6、DB server connected to several PCs through an Ethernet LAN GUI application executing at the PCs LAN connected to the enterprise mainframe through a T1 line DB server is updated every night.,Migration to C/S systems mainframe based system,mainframe,T1 line,Migration to C/S DB server based system,main

    7、frame,T1 line,DB server,LAN,gateway,Migration to C/S: some important questions,How many clients can be supported by the DB server while maintaining a response time below 2.5 sec? How long does it take to update the DB every night?,Migration to C/S example: measurements with a prototype,During 30 min

    8、utes (1,800 sec): 25% CPU utilization 30% disk utilization800 transactions were executed Each transaction used:1,800 * 0.25 / 800 = 0.56 sec of CPU and1,800 * 0.30 / 800 = 0.68 sec of disk.,Good News and Bad News,Good News: we know the CPU and I/O service time of each transaction. Bad News: transact

    9、ions at the DB server compete for CPU and I/O queues will form at each device. We dont know how long each transaction waits in the queue for the CPU and for the disk.,DB Server Model,arriving transactions,DB server,departing transactions,CPU or I/O Times,service demand= 0.56 seg,queue waiting time,?

    10、,Capacity Planning Definition,Capacity Planning is the process of predicting when the service levels will be violated as a function of the workload evolution, as well as the determination of the most cost-effective way of delaying system saturation.,C/S Migration Example: desired results,no. of clie

    11、nt workstations,response time (sec),service level,Part III: A Capacity Planning Methodology for Client/Server Environments,Configuration Plan,Investment Plan,Personnel Plan,Understanding the Environment,Workload Characterization,Workload Model,Validation and Calibration,Workload Forecasting,Performa

    12、nce Prediction,Cost Prediction,Valid Model,Cost Model,Developing a Cost Model,Performance Model,Cost/Performance Analysis,Capacity Planning Methodology for Client Server Environments,Configuration Plan,Investment Plan,Personnel Plan,Understanding the Environment,Workload Characterization,Workload Mo

    13、del,Validation and Calibration,Workload Forecasting,Performance Prediction,Cost Prediction,Valid Model,Cost Model,Developing a Cost Model,Performance Model,Cost/Performance Analysis,Capacity Planning Methodology for Client Server Environments,Understanding the Environment,Hardware and System Softwar

    14、e Network Connectivity Map Network Protocols Server Configurations Types of Applications Service Level Agreements Support and Management Structure Procurement Procedures,Example of Understanding the Environment,5,000 PCs (386 e 486) running DOS and Windows 3.1 and 800 UNIX workstations.IBM MVS mainf

    15、rame. 80 LANs in 20 buildings connected by an FDDI 100 Mbps backbone. 50 Cisco routers. Network technologies: FDDI, Ethernet, T1 links and Internet.,Example of Understanding the Environment (continued),Protocols being routed: TCP/IP and Novell IPX. Servers: 80% are 486 and Pentiums and 20% are RISC

    16、workstations running UNIX. Applications: office automation (e-mail, spreadsheets, wordprocessing), access to DBs (SQL servers) and resource sharing. Future applications: teleconferencing, EDI, image processing.,Configuration Plan,Investment Plan,Personnel Plan,Understanding the Environment,Workload

    17、Characterization,Workload Model,Validation and Calibration,Workload Forecasting,Performance Prediction,Cost Prediction,Valid Model,Cost Model,Developing a Cost Model,Performance Model,Cost/Performance Analysis,Capacity Planning Methodology for Client Server Environments,Workload Characterization,Pro

    18、cess of partitioning the global workload into subsets called workload components. Examples of workload components:DB transactions,requests to a file server or,jobs with similar characteristics. Workload components are composed of basic components.,Workload Characterization: workload components and b

    19、asic components,Workload Characterization Basic Component Parameters,Workload Intensity Parameters number of messages sent/hour number of query transactions/sec Service Demand Parameters average message length average I/O time per query transaction.,Workload Characterization Methodology,Identificati

    20、on of Workload Components Identification of Basic Components. Parameter Selection. Data Collection: benchmarks and ROTS(Rules of Thumb) may be used. Workload partitioning: averaging and clustering.,Workload Characterization Data Collection Alternatives,Benchmarks,National Software Testing Laboratori

    21、es (NSTL): servers and applications. Transaction Processing Council (TPC) System Performance Evaluation Cooperative (SPEC) AIM Benchmark suites,Configuration Plan,Investment Plan,Personnel Plan,Understanding the Environment,Workload Characterization,Workload Model,Validation and Calibration,Workload

    22、 Forecasting,Performance Prediction,Cost Prediction,Valid Model,Cost Model,Developing a Cost Model,Performance Model,Cost/Performance Analysis,Capacity Planning Methodology for Client Server Environments,Workload Model Validation,Configuration Plan,Investment Plan,Personnel Plan,Understanding the En

    23、vironment,Workload Characterization,Workload Model,Validation and Calibration,Workload Forecasting,Performance Prediction,Cost Prediction,Valid Model,Cost Model,Developing a Cost Model,Performance Model,Cost/Performance Analysis,Capacity Planning Methodology for Client Server Environments,Workload F

    24、orecasting,Process of predicting the workload intensity.,tps,Workload Forecasting Forecasting Business Units,Number of business elements that determine the workload evolution number of invoices number of accounts number of employees number of claims number of beds,Workload Forecasting Methodology,Ap

    25、plication Selection Identification of Forecasting Business Units (FBUs) Statistics gathering on FBUs FBU forecasting (use linear regression, moving averages, exponential smoothing) and business strategic plans.,Linear Regression Example,Configuration Plan,Investment Plan,Personnel Plan,Understanding

    26、 the Environment,Workload Characterization,Workload Model,Validation and Calibration,Workload Forecasting,Performance Prediction,Cost Prediction,Valid Model,Cost Model,Developing a Cost Model,Performance Model,Cost/Performance Analysis,Capacity Planning Methodology for Client Server Environments,Per

    27、formance Prediction,Predictive models: analytic or simulation based. Analytic models are based on Queuing Networks (QNs) efficient allow for the fast analysis of a large number of scenarios ideal for capacity planning,Performance Prediction factors that impact performance,Client stations Servers Com

    28、munication media Protocols Interconnection devices (bridges, routers and gateways),Performance Prediction Model Accuracy,Performance Prediction An Example,Performance Prediction QN for Example,Performance Prediction Response Times for the Example,Response Time (sec),Number of clients,Configuration P

    29、lan,Investment Plan,Personnel Plan,Understanding the Environment,Workload Characterization,Workload Model,Validation and Calibration,Workload Forecasting,Performance Prediction,Cost Prediction,Valid Model,Cost Model,Developing a Cost Model,Performance Model,Cost/Performance Analysis,Capacity Plannin

    30、g Methodology for Client Server Environments,Performance Model Validation,Configuration Plan,Investment Plan,Personnel Plan,Understanding the Environment,Workload Characterization,Workload Model,Validation and Calibration,Workload Forecasting,Performance Prediction,Cost Prediction,Valid Model,Cost M

    31、odel,Developing a Cost Model,Performance Model,Cost/Performance Analysis,Capacity Planning Methodology for Client Server Environments,A Cost Model for C/S Environments,Less than 5% of US companies quantify or control PC and LAN costs. Some hidden costs in C/S environments: hardware maintenance and s

    32、upport software maintenance and upgrades software distribution costs personnel costs (approx 60% of total cost),Some Cost ROTs,Software and hardware upgrades cost 10% of purchase price per year. A LAN administrator costs between US$500 and US$700 per client WS/month. Training costs vary between US$1

    33、,500 and US$3,000 per technical staff person/year. 40% of personnel costs are in resource management, 40% in application development, and 20% in other categories.,Part IV: Performance Prediction Models for C/S Environments,Queues and Queuing Networks,Operational Analysis: Quick Review,Littles Law Ut

    34、ilization Law Forced Flow Law Service Demand Law Response Time Law,Single Queue,average transaction arrival rate X = average throughput,Single Queue,W average waiting time S = average service time R = average response time,Single Queue,W,S,R,tps,X tps,R = W + S,Littles Law,Littles Law Example,A DB s

    35、erver executes 10 transactions per second. On the average, 20 transactions are being executed simultaneously. What is the average transaction response time?,Littles Law Example,X = 10 tps N = 20Littles Law: N = R R = N / = 20 /10 = 2 sec,Littles Law applied to single queues,R,Utilization Law,no. tra

    36、nsactions/ measurement interval =,busy time / measurement interval=,busy time / no. transactions =,B/T,C/T,B/C,Utilization Law,X = C / T,U = B / T,S = B / C,Utilization Law,X = C / T,tps,X tps,S,U,U = B / T,S = B / C,Utilization Law,tps,X tps,S,U = S * X,Utilization Law Example,Each access to the DB

    37、 servers disk takes 25 msec on the average. During a one hour interval, 108,000 I/Os to the disk were executed. What is the disk utilization?,Utilization Law Example,S = 0.025 secX = 108,000 / 3,600 = 30 accesses/secUtilization Law: U = S * X U = 0.025 * 30 = 0.75 = 75 %,Forced Flow Law,Xo,Xi = Vi *

    38、 Xo,Vi = avg. no. visits to device i per transaction,Forced Flow Law Example,Each transaction executed on the DB server performs 3 disk accesses on the average. The disk utilization measured during a one hour interval was 50%. During the same interval, 7,200 transactions were executed. What is the a

    39、verage service time at the disk?,Forced Flow Law Example,Given:Vi = 3 disk accesses per transaction Ui = 30% = 0.3Xo = 7,200 / 3,600 = 2 tpsUtilization Law: Ui = Si * Xi Si = Ui / Xi Forced Flow Law: Xi = Vi * Xo Xi = 3 * 2 = 6 tpsSi = Ui / Xi = 0.3 / 6 = 50 msec,Service Demand Law,S1 S2 S3 S4,servi

    40、ce demand (D),D = Si = V * S,i,Service Demand Law,X o= C / T tps,S1 S2 S3 S4,service demand (D),D = (U * T) / C = U / (C / T) = U / X,Service Demand Law,Xo= C / T tps,S1 S2 S3 S4,service demand (D),D = V * S = U / Xo,Response Time Law,Ro = Vi * Ri,Vi = avg. no. visits to device i per transaction,Ro,

    41、i,Operational Analysis: summary,Littles Law: N = R Utilization Law: U = S * X Forced Flow Law: Xi = Vi * Xo Service Demand Law: D = U / Xo Response Time Law: Ro = Vi*Ri,i,Queuing Networks,Xo,Ro,Given: service demands and no. of customers Find: average response time (Ro), throughput (Xo), average que

    42、ue length per device.,Queuing Networks Types of Devices,queuing device: load independent,Si(n) = Si for all n,queuing device: load dependentSi(n) = f(n),delay deviceRT(i,n) = Di,Queuing Network Solution,Basic Technique : Mean Value Analysis (MVA)Feature: simple, iterative and efficient.,Mean Value A

    43、nalysis Residence Time Equation,Residence Time (RT) at device iRT (i,n) = Di + Di*NQ (i,n-1),my total service time,total waiting time = total service time of all customers I find ahead of me,Mean Value Analysis Residence Time Equation,Residence Time (RT) at device iRT (i,n) = Di * (1 + NQ (i,n-1)whe

    44、re NQ (i,n) is the average number of transactions at device i when there are n transactions in the system.,Mean Value Analysis Throughput Equation,Ro,Xo,n trans.,Littles Law: n = Xo * Ro = Xo * RT(i,n),i,Mean Value Analysis Throughput Equation,Throughput Xo (n)Xo (n) = n / RT (i,n)where n is the num

    45、ber of transactions in the system.,i,Mean Value Analysis Queue Length Equation,i,. . .,. . .,X (i, n),R (i, n),NQ (i,n),Littles Law NQ (i, n) = R (i, n) * X (i, n),Mean Value Analysis Queue Length Equation,Littles Law NQ (i, n) = R (i, n) * X (i, n),Forced Flow Law X (i, n) = Vi * Xo (n),NQ (i, n) =

    46、 R (i, n) * Vi * Xo (n) =RT (i, n) * Xo (n),Mean Value Analysis Queue Length Equation,NQ (i, n) = RT (i, n) * Xo (n),Average Queue Length NQ (i, n),Mean Value Analysis Combining the 3 equations,NQ (i, n) = RT (i, n) * Xo (n),Xo (n) = n / RT (i,n),Di * (1 + NQ (i,n-1),where NQ (i, 0) = 0 for all devi

    47、ce i.,Di,RT (i,n) =,if device i is a delay device,Mean Value Analysis Combining the 3 equations,NQ (i, 1) = RT (i, 1) * Xo (1),Xo (1) = 1 / RT (i,1),RT (i, 1) = Di * (1 + NQ (i, 0) =Di * (1 + 0) = Di,n = 1,Mean Value Analysis Combining the 3 equations,NQ (i, 2) = RT (i, 2) * Xo (2),Xo (2) = 2 / RT (

    48、i,2),RT (i, 2) = Di * (1 + NQ (i, 1),n = 2,Mean Value Analysis Example,Revisiting the C/S migration example Response Time vs. No. Clients,C/S example: additional disk Response Time vs. No. Clients,Part V: Advanced Models for the Performance Prediction of C/S Systems,Example: Telemarketing Application,Customers order products through a catalog. Orders are made by phone using a credit card. 30,000 orders are received every day. Calls are placed on hold for the first available representative.,


    注意事项

    本文(Capacity Planning in Client-Server Environments.ppt)为本站会员(confusegate185)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开