欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Binary Image Proc- week 2.ppt

    • 资源ID:378944       资源大小:1.51MB        全文页数:45页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Binary Image Proc- week 2.ppt

    1、Stockman CSE803 Fall 2008,1,Binary Image Proc: week 2,Getting a binary image Connected components extraction Morphological filtering Extracting numerical features from regions,Stockman CSE803 Fall 2008,2,Quick look at thresholding,Separate objects from background. 2 class or many class problem? How

    2、to do it? Discuss methods later.,Stockman CSE803 Fall 2008,3,Cherry image shows 3 regions,Background is black Healthy cherry is bright Bruise is medium dark Histogram shows two cherry regions (black background has been removed),Use this gray value to separate,Stockman CSE803 Fall 2008,4,Choosing a t

    3、hreshold,Common to find the deepest valley between two modes of bimodal histogram Or, can level-slice using the intensities values a and b that bracket the mode of the desired objects Can fit two or more Gaussian curves to the histogram Can do optimization on above (Ohta et al),Stockman CSE803 Fall

    4、2008,5,Connected components,Assume thresholding obtained binary image Aggregate pixels of each object 2 different program controls Different uses of data structures Related to paint/search algs Compute features from each object region,Stockman CSE803 Fall 2008,6,Notes on Binary Image Proc,Connected

    5、Components Algorithms Separate objects from background Aggregate pixels for each object Compute features for each object Different ways of program control Different uses of data structures Related to paint/search algs,Stockman CSE803 Fall 2008,7,Example red blood cell image,Many blood cells are sepa

    6、rate objects Many touch bad! Salt and pepper noise from thresholding How useable is this data?,Stockman CSE803 Fall 2008,8,Cleaning up thresholding results,Can delete object pixels on boundary to better separate parts. Can fill small holes Can delete tiny objects (last 2 are “salt-and-pepper” noise)

    7、,Stockman CSE803 Fall 2008,9,Removing salt-and-pepper,Change pixels all of whose neighbors are different (coercion!): see hole filled at right Delete objects that are tiny relative to targets: see some islands removed at right,Stockman CSE803 Fall 2008,10,Simple morphological cleanup,Can be done jus

    8、t after thresholding- remove salt and pepper Can be done after connected components are extracted- discard regions that are too small or too large to be the target,Stockman CSE803 Fall 2008,11,CC analysis of red blood cells,63 separate objects detected Single cells have area about 50 Noise spots Gob

    9、s of cells,Stockman CSE803 Fall 2008,12,More control of imaging,More uniform objects More uniform background Thresholding works Objects actually separated,Stockman CSE803 Fall 2008,13,Results of “pacmen” analysis,15 objects detected Location known Area known 3 distinct clusters of 5 values of area;

    10、85, 145, 293,Stockman CSE803 Fall 2008,14,Results of “coloring” objects,Each object is a connected set of pixels Object label is “color” How is this done?,Stockman CSE803 Fall 2008,15,Extracting components: Alg A,Collect connected foreground pixels into separate objects label pixels with same color

    11、A) collect by “random access” of pixels using “paint” or “fill” algorithm,Stockman CSE803 Fall 2008,16,paint/fill algorithm,Obj region must be bounded by background Start at any pixel r,c inside obj Recursively color neighbors,Stockman CSE803 Fall 2008,17,Events of paint/fill algorithm,PP denotes “p

    12、rocessing point” If PP outside image, return to prior PP If PP already labeled, return to prior PP If PP is backgr. pixel, return to prior PP If PP is unlabeled obj pixel, then1) label PP with current color code2) recursively label neighbors N1, , N8(or N1, , N4),Stockman CSE803 Fall 2008,18,Recursi

    13、ve Paint/Fill Alg: 1 region,Color closed boundary with L Choose pixel r,c inside boundary Call FILL,FILL ( I, r, c, L)If r,c is out, returnIf Ir,c = L, returnIr,c L / color itFor all neighbors rn,cnFILL(I, rn, cn, L),Stockman CSE803 Fall 2008,19,Connected components using recursive Paint/Fill,Raster

    14、 scan until object pixel found Assign new color for new object Search through all connected neighbors until the entire object is labeled Return to the raster scan to search for another object pixel,Stockman CSE803 Fall 2008,20,Extracting 5 objects,Stockman CSE803 Fall 2008,21,Outside material to cov

    15、er,Look at C+ functions for raster scanning and pixel “propagation” Study related fill algorithm Discuss how the recursion works Prove that all pixels connected to the start pixel must be colored the same,Stockman CSE803 Fall 2008,22,Alg B: raster scan control,Visit each image pixel once, going by r

    16、ow and then column. Propagate color to neighbors below and to the right. Keep track of merging colors.,Stockman CSE803 Fall 2008,23,Raster scanning control,Stockman CSE803 Fall 2008,24,Events controlled by neighbors,If all Ni background, then PP gets new color code If all Ni same color L, then PP ge

    17、ts L If Ni != Nj, then take smallest code and “make” all same See Ch 3.4 of S&S,Stockman CSE803 Fall 2008,25,Merging connecting regions,Detect and record merges while raster scanning. Use equivalence table to recode,Stockman CSE803 Fall 2008,26,alg A versus alg B,Visits pixels more than once Needs f

    18、ull image Recursion or stacking slower than B No need to recolor Can compute features on the fly Can quit if search object found (tracking?),“visits” each pixel once Needs only 2 rows of image at a time Need to merge colors and region features when regions merge Typically faster Not suited for heuri

    19、stic start pixel,Stockman CSE803 Fall 2008,27,Outside material,More examples of raster scanning Union-find algorithm and parent table Computing features from labeled object region More on recursion and C+,Stockman CSE803 Fall 2008,28,Computing features of regions,Can postprocess results of CC alg. O

    20、r, can compute as pixels are aggregated,Stockman CSE803 Fall 2008,29,Area and centroid,Stockman CSE803 Fall 2008,30,Second moments,These are invariant to object location in the image.,Stockman CSE803 Fall 2008,31,Contrast second moments,For the letter I Versus the letter O Versus the underline _,r,c

    21、,Stockman CSE803 Fall 2008,32,Perimeter pixels and length,Stockman CSE803 Fall 2008,33,Circularity or elongation,Stockman CSE803 Fall 2008,34,Circularity as variance of “radius”,Stockman CSE803 Fall 2008,35,Radial mass transform,for each radius r, accumulate the mass at distance r from the centroid

    22、(rotation and translation invariant)can iterate over bounding box and for each pixel, compute a rounded r and increment histogram of mass Hr,Stockman CSE803 Fall 2008,36,Interest point detection,Centroids of regions can be interesting points for analysis and matching.What do we do if regions are dif

    23、ficult to extract?We might transform an image neighborhood into a feature vector, and then classify as “interesting” vs “not”.,Stockman CSE803 Fall 2008,37,Slice of spine MRI and interesting points selected by RMT & SVM,Stockman CSE803 Fall 2008,38,3D microvolumes from Argonne high energy sensor: 1

    24、micron voxels,Ram CAT slice of a bee stinger (left) versus segmented slice (right). Each voxel is about 2 microns per side.,Stockman CSE803 Fall 2008,39,Scanning technique used,CCD camera material sample X-raysscintillator,Pin head,rotate,X-rays partly absorbed by sample; excite scintillator produci

    25、ng image in the camera; rotate sample a few degrees and produce another image; 3D reconstruction using CT,Stockman CSE803 Fall 2008,40,Different view of stinger,Rendered using ray tracing and pseudo coloring based on the material density clusters that were used to separate object from background. (D

    26、ata scanned at Argonne National Labs),Stockman CSE803 Fall 2008,41,Section of interesting points from RMT&SVM,Stockman CSE803 Fall 2008,42,Segmentation of Scutigera,Stockman CSE803 Fall 2008,43,Scutergera: a tiny crustacean,organism is smaller than 1 mmscanned by volume segmented and meshed by Paul

    27、Albeeroughly ten million trianglesto represent the surfaceanaglyph created for 3D visualization (view with glasses),Stockman CSE803 Fall 2008,44,Axis of least inertia,gives object oriented coordinate systempasses through centroidaxis of most inertia is perpendicular to itconcept extends to 3D and nD,Stockman CSE803 Fall 2008,45,Derive the formula for best axis,use least squares to derive the tangent angle q of the axis of least inertiaexpress tan 2q in terms of the 3 second momentsinterpret the formula for a circle of pixels and a straight line of pixels,


    注意事项

    本文(Binary Image Proc- week 2.ppt)为本站会员(赵齐羽)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开