欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Beam-Width Prediction for Efficient Context-Free Parsing.ppt

    • 资源ID:378881       资源大小:1.03MB        全文页数:28页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Beam-Width Prediction for Efficient Context-Free Parsing.ppt

    1、Beam-Width Prediction for Efficient Context-Free Parsing,Nathan Bodenstab, Aaron Dunlop, Keith Hall, Brian Roark,June 2011,OHSU Beam-Search Parser (BUBS),2,Standard bottom-up CYK Beam-search per chart cell Only “best” are retained,Ranking, Prioritization, and FOMs,f() = g() + h() Figure of Merit Car

    2、aballo and Charniak (1997) A* search Klein and Manning (2003) Pauls and Klein (2010) Other Turrian (2007) Huang (2008) Apply to beam-search,3,Beam-Width Prediction,Traditional beam-search uses constant beam-width Two definitions of beam-width: Number of local competitors to retain (n-best) Score dif

    3、ference from best entry Advantages Heavy pruning compared to CYK Minimal sorting compared to global agenda Disadvantages No global pruning all chart cells treated equal Conservative to keep outliers within beam,4,5,Beam-Width Prediction,How often is gold edge ranked in top N per chart cell Exhaustiv

    4、ely parse section 22 + Berkeley latent variable grammar,Gold rank = N,Cumulative Gold Edges,6,Beam-Width Prediction,How often is gold edge ranked in top N per chart cell Exhaustively parse section 22 + Berkeley latent variable grammar,Gold rank = N,Cumulative Gold Edges,7,Beam-Width Prediction,Beam-

    5、search + C&C Boundary ranking: How often is gold edge ranked in top N per chart cell:,Gold rank = N,Cumulative Gold Edges,To maintain baseline accuracy, beam-width must be set to 15 with C&C Boundary ranking (and 50 using only inside score),8,Beam-Width Prediction,Beam-search + C&C Boundary ranking:

    6、 How often is gold edge ranked in top N per chart cell:,Gold rank = N,Cumulative Gold Edges,To maintain baseline accuracy, beam-width must be set to 15 with C&C Boundary ranking (and 50 using only inside score),Over 70% of gold edges are already ranked first in the local agenda14 of 15 edges in thes

    7、e cells are unnecessaryWe can do much better than a constant beam-width,Beam-Width Prediction,Method: Train an averaged perceptron (Collins, 2002) to predict the optimal beam-width per chart cell Map each chart cell in sentence S spanning words wi wj to a feature vector representation:x: Lexical and

    8、 POS unigrams and bigrams, relative and absolute span y:1 if gold rank k, 0 otherwise (no gold edge has rank of -1) Minimize the loss:H is the unit step function,9,k,k,Beam-Width Prediction,Method: Use a discriminative classifier to predict the optimal beam-width per chart cell Minimize the loss:L i

    9、s the asymmetric loss function:If beam-width is too large, tolerable efficiency loss If beam-width is too small, high risk to accuracy Lambda set to 102 in all experiments,10,k,11,Beam-Width Prediction,Special case: Predict if chart cell is open or closed to multi-word constituents,12,Beam-Width Pre

    10、diction,A “closed” chart cell may need to be partially open Binarized or dotted-rule parsing creates new “factored” productions:,13,Beam-Width Prediction,Method 1: Constituent Closure,14,Beam-Width Prediction,Constituent Closure is a per-cell generalization of Roark & Hollingshead (2008) O(n2) class

    11、ifications instead of O(n),15,Beam-Width Prediction,Method 2: Complete Closure,16,Beam-Width Prediction,Method 3: Beam-Width Prediction,17,Beam-Width Prediction,Method 3: Beam-Width PredictionUse multiple binary classifiers instead of regression (better performance) Local beam-width taken from class

    12、ifier with smallest beam-width prediction Best performance with four binary classifiers: 0, 1, 2, 4 97% of positive examples have beam-width = 4 Dont need a classifier for every possible beam-width value between 0 and global maximum (15 in our case),18,Beam-Width Prediction,19,Beam-Width Prediction,

    13、1.00.80.60.40.20.0,20,Beam-Width Prediction,Section 22 development set resultsDecoding time is seconds per sentence averaged over all sentences in Section 22Parsing with Berkeley latent variable grammar (4.3 million productions),21,Beam-Width Prediction,22,Beam-Width Prediction,Beam-Width Prediction

    14、,23,24,Beam-Width Prediction,Section 23 test results Only MaxRule is marginalizing over latent variables and performing non-Viterbi decoding,Thanks.,25,26,Beam-Width Prediction,27,FOM Details,C&C FOM Details FOM(NT) = Outsideleft * Inside * Outsideright Inside = Accumulated grammar score Outsideleft = MaxPOS POS forward prob * POS-to-NT transition prob Outsideright = MaxPOS NT-to-POS transition prob * POS bkwd prob ,28,FOM Details,C&C FOM Details,


    注意事项

    本文(Beam-Width Prediction for Efficient Context-Free Parsing.ppt)为本站会员(Iclinic170)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开