欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Automated Model-Building with TEXTAL.ppt

    • 资源ID:378737       资源大小:1.34MB        全文页数:14页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Automated Model-Building with TEXTAL.ppt

    1、Automated Model-Building with TEXTAL,Thomas R. Ioerger Department of Computer Science Texas A&M University,Automated model-building programCan we automate the kind of visual processing of patterns that crystallographers use? Intelligent methods to interpret density, despite noise Exploit knowledge a

    2、bout typical protein structure Focus on medium-resolution maps optimized for 2.8A (actually, 2.6-3.2A is fine) typical for MAD data (useful for high-throughput) other programs exist for higher-res data (ARP/wARP),Overview of TEXTAL,Electron density map (not structure factors),TEXTAL,Protein model (m

    3、ay need refinement),Main Stages of TEXTAL,electron density map,CAPRA,Ca chains,LOOKUP,model (initial coordinates),model (final coordinates),Post-processing routines,Reciprocal-space refinement/DM,Human Crystallographer (editing),build-in side-chain and main-chain atoms locally around each Ca,example

    4、: real-space refinement,CAPRA: C-Alpha Pattern-Recognition Algorithm,tracing,linking,Neural network: estimates which pseudo-atoms are closest to true Cas,Example of Ca-chains fit by CAPRA,% built: 84% # chains: 2 lengths: 47, 88 RMSD: 0.82A,Rat a2 urinary protein (P. Adams) data: 2.5A MR map generat

    5、ed at 2.8A,Stage 2: LOOKUP,LOOKUP is based on Pattern Recognition Given a local (5A-spherical) region of density, have we seen a pattern like this before (in another map)? If so, use similar atomic coordinates. Use a database of maps with known structures 200 proteins from PDB-Select (non-redundant)

    6、 back-transformed (calculated) maps at 2.8A (no noise) regions centered on 50,000 Cas Use feature extraction to match regions efficiently feature (e.g. moments) represent local density patterns features must be rotation-invariant (independent of 3D orientation) use density correlation for more preci

    7、se evaluation,Examples of Numeric Density Features,Distance from center-of-sphereto center-of-mass Moments of inertia - relativedispersion along orthogonal axes Geometric features like “Spoke angles” Local variance and other statistics,TEXTAL uses 19 distinct numeric features to represent the patter

    8、n of density in a region, each calculated over 4 different radii, for a total of 76 features.,F=,F=,F=,F=,Database of known maps,Region in map to be interpreted,The LOOKUP Process,Find optimal rotation,Stage 3: Post-Processing,Interfaces for Using TEXTAL,Stand-alone commands and scripts capra-scale

    9、prot.xplor prot-scaled.xplor neotex.sh myprotein textal.log lots of intermediate files and logs WINTEX: Tcl/Tk interface creates jobs in sub-directories Public Release: July 2004 http:/textal.tamu.edu:12321 Integrated into Phenix http:/phenix-online.org Python module model-building tasks in GUI,Gall

    10、ery of Examples,Conclusions,Pattern recognition is a successful technique for macromolecular model-building Future directions: building ligands, co-factors, etc. recognizing disulfide bridges phase improvement (iterating with refinement) loop-building further integration with Phenix Intelligent Agen

    11、t-based methods for guiding/automating model-building interactive graphics for specialized needs (e.g. fixing chains, editing identities),Acknowledgements,Funding: National Institutes of Health People: James C. Sacchettini Kevin Childs, Kreshna Gopal, Lalji Kanbi, Erik McKee, Reetal Pai, Tod Romo Our association with the PHENIX group: Paul Adams (Lawrence Berkeley National Lab) Randy Read (Cambridge University) Tom Terwilliger (Los Alamos National Lab),


    注意事项

    本文(Automated Model-Building with TEXTAL.ppt)为本站会员(appealoxygen216)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开