欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Approximating The Minimum Equivalent Digraph.ppt

    • 资源ID:378531       资源大小:266KB        全文页数:28页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Approximating The Minimum Equivalent Digraph.ppt

    1、Approximating The Minimum Equivalent Digraph,S. Khuller, B. Raghavachari, and N. Young. 1995 SIAM J. Computing,Some Math Knowledge (1),Fourier Coefficients and Series:,Some Math Knowledge (2)*,Some Math Knowledge (3),Parsevals Theorem:,Some Math Knowledge (4)*,The MEG (minimum equivalent graph) prob

    2、lem,Input: A directed graph G = (V, E ). Output: the smallest subset of edges that maintains reachability relations.,B,A,C,B,A,C,MEG is NP-hard*,Let G = ( V, E ) be a strongly connected digraph and |V | = n. G has a Hamiltonian Cycle |MEG(G )| = n. Pf: (=),a1,a2,ak,(n k ) nodes, each has indegree =

    3、1.,Variants,Acyclic MEG problem: G is an acyclic digraph. polynomial time solvable.MSCSS (minimum strongly connected spanning subgraph) problem: G is a strongly connected digraph.,Reduce MEG to MSCSS (1),Step1: decompose G into Strongly connected components in polynomial time.,A,B,C,D,E,Reduce MEG t

    4、o MSCSS (2),Step 2: acyclic MEG problem is in P.,A,B,C,D,E,A,B,C,D,E,Reduce MEG to MSCSS (3),Step 3: Solve MSCSS(A), , MCSS(E).,A,B,C,D,E,Two Implications,1. MSCSS is NP-hard,2. If MSCSS problem has error ratio k, then MEG problem has error ratio k.,Pf: After Step 1, 2, We get,A,B,C,D,E,Let C(A), ,

    5、C(E) be the costs of our approximating solutions. Let C*(A), , C*(E) be costs of the optimal solutions.= C(A) kC*(A), , C(E) kC*(E),C* = C*(A)+ C*(B)+ C*(C) + C*(D)+ C*(E) + 4,C k ( C*(A)+ C*(B)+ C*(C) + C*(D)+ C*(E) ) + 4,(C / C*) k,A,B,C,D,E,C = C(A)+ C(B)+ C(C) + C(D)+ C(E) + 4,C kC*(A)+ kC*(B)+

    6、kC*(C) + kC*(D)+ kC*(E) + 4,The approximation algorithm for the MSCSS problem,CONTRACT-CYCLESk (G ) 1. for i = k, k-1, k-2, , 2 2. While the graph contains a cycle with at least i edges 3. Contract the cycle. 4. return edges on those contracted cycles.,Is this algorithm correct?,1,2,5,3,4,6,7,8,6,7,

    7、9,1. for i = k, k-1, k-2, , 2 2. While the graph contains a cycle with at least i edges 3. Contract the cycle. 4. return edges on those contracted cycles.,Let Gi = the graph after after contracting cycles with i edges. Let ni = #vertices remain in the graph after contracting cycles with i edges. Let

    8、 ei = #edges on the contracted cycles with i edges,Symbol Definitions,Error ratio analysis (1),(Contraction Lemma): For any digraph G and set of edges S, C*(G ) C*(G S ),Error ratio analysis (2),Error ratio analysis (3),Error ratio analysis (4),Theorem: Contract-Cyclesk(G ) returns at most rk C*(G )

    9、 edges, where,ni = #vertices remain in the graph after contracting cycles with i edges. ei = #edges on the contracted cycles with i edges,Time Complexity (1),How to find cycles with k edges ? Step 1: Find all simple paths P with k-1 edges. Step 2: foreach p P, check whether there is a path from the

    10、tail of p to the head of p.,If k is even, there at most mk/2 such paths, where m = #edges:,Time Complexity (2)*,m,k/2,Time Complexity (3)*,If k is odd, there at most nm(k-1)/2 such paths:,m,(k-1)/2,1,n,Time Complexity (4),O(m) time to check whether there is a path from the tail of p to the head of p. O(kn) = O(n) iterations of the while loop. O(nm1+ k/2), k is even. O(n2m(1+k)/2), k is odd.,1. for i = k, k-1, k-2, , 2 2. While the graph contains a cycle with at least i edges 3. Contract the cycle. 4. return edges on those contracted cycles.,


    注意事项

    本文(Approximating The Minimum Equivalent Digraph.ppt)为本站会员(roleaisle130)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开