欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Analyzing Time Series Signals.ppt

    • 资源ID:378376       资源大小:2.40MB        全文页数:43页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Analyzing Time Series Signals.ppt

    1、Analyzing Time Series & Signals,Professor Melvin J. Hinich hinichmail.la.utexas.edu,2,Useful Models Should be Derived from Science,Linear autoregressive (AR) and vector AR models are the most widely applied model in contemporary time series methodology They are examples of discrete-time linear dynam

    2、ical systems They almost never have a firm scientific foundation What are linear dynamical systems?,3,Linear Dynamical Systems,Continuous time System of first order differential equations System of pth order differential equations,Discrete-time System of first order difference equations System of pt

    3、h order difference equations,They are almost equivalent,4,First Order Linear Differential Equation,Solution Exponential Trend: x(t)=x(0)ert,Forced First Order DE,5,Convolution,6,Discrete-time Convolution,7,1st Order Linear Discrete-Time Eqn.,Forced First Linear Difference Equation.,8,Linear Harmonic

    4、 Oscillator,9,Harmonic Solution,c is called the damping parameter. Since it is positive the solution goes to zero as,10,2nd Order Discrete-time Equation,11,Example Impulse Response,12,Constant Coefficient Linear Dynamical System,13,Homogeneous Linear Dynamical System,14,Uncoupled System,15,Uncoupled

    5、 System,The system is stable if all the rm 0,If wm=0 then the solution is an exponential.,damped oscillation,exploding exponential oscillation,unstable equilibrium,16,Impulse Response,17,Forced Linear Dynamical System,Uncoupled linear system,18,Complex Transfer Function,19,Autoregressive AR(p) Model

    6、,20,Discrete-time Linear System,Written as a first order homogeneous system,21,Discrete & Continuous-time Linear System,22,Discrete-time Solution,If there is no aliasing!,damped oscillation,unstable equilibrium,23,Aliasing,Aliasing is an identification problem,24,Exponential Trend,Trend only depends

    7、 on the rate r & the initial value x(0) logx(t)-logx(0)=r t How should we model evolution of the rate r? Model rate using covariates and stochastic shocks Estimate trend from data using the model Analyze the residual process to test the model,25,Deterministic Trend Plus AR(p),Fit the trend using lea

    8、st squares,Subtract estimated trend from y(tn),Estimate AR(p) from the residuals,Use orthogonal polynomials for curvilinear trend,26,Stochastic Trend,is a pure white noise process,creates a unit root in the implicit model,27,Implicit AR(p+1) Model,with the convention that,The z transform of the syst

    9、em is,28,Stochastic Trend with Drift=0.2 se=5 AR(10),29,Identifying Linear Systems,Harder problem that is commonly believed There are many specifications that give similar correlations across variables Forecasting is the goal of this enterprise,30,Linear Dynamical System Plus Noise,31,A Simple First

    10、 Order Nonlinear System,32,Example of a Simple Nonlinear Model,33,Nonlinear Model - Uniform Input s = 0.5, c = 0.05 , w = 0.2p , d = 0.5,34,Phase Plot of the Nonlinear Impulse Response,35,Phase Plot of the Linear Impulse Response,36,Results of a Least Squares AR Fit to the Data,Data: Skew = 0.288e-0

    11、2 Kurtosis = 0.988,AR( 6) parameters & t values,a4 = 0.02 a6 = -0.01,166.9 60.5 22.8,Adjusted R Square = 0.401,a1= - 0.75 a2 = - 0.34 a3 = - 0.13,3.6 2.2,37,Moving Frame Detection Method,Data is prewhitened using an AR(20) fit Statistics from residuals of an AR( 7) fit to each frame Frame Length = 5

    12、0 No. of frames = 2000 100 Bootstraps Sizes:H =0.00476 C =0.0276,38,Analyzing the Residuals - Whiteness,Standardize the data,Correlation Test Statistic for e 0.5,39,Analyzing the Residuals - Nonlinearity,Bicorrelation for lags r , s where 0 s r,Bicorrelation Test Statistic for e 0.5,40,C - Correlati

    13、on Statistics,41,H - Bicorrelation Statistics,42,Standard Deviations & R2,43,One Approach to Estimating this Nonlinear Model,Divide the sample into overlapping frames,Estimate a linear model for each frame,Compute the eigenvalues for each frame model,Estimate the nonlinear parameter by least squares,Compute the log of each eigenvalue,


    注意事项

    本文(Analyzing Time Series Signals.ppt)为本站会员(周芸)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开