欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Analyzing Promoter Sequences with Multilayer Perceptrons.ppt

    • 资源ID:378374       资源大小:50.50KB        全文页数:15页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Analyzing Promoter Sequences with Multilayer Perceptrons.ppt

    1、Analyzing Promoter Sequences with Multilayer Perceptrons,Glenn Walker ECE 539,Background (DNA),Deoxyribonucleic acid (DNA) is a long molecule made up of combinations of four smaller molecules (base pairs): adenine (A), cytosine (C), guanine (G), thymine (T). These four molecules are combined in an o

    2、rder unique to each living organism. The order of the molecules contains the information to make all the parts necessary for any organism to survive.,DNA is two-stranded and complementary,Background (DNA),Genes are sections of DNA that can contain from a few hundred base-pairs to tens of thousands.

    3、Genes contain instructions on how to make proteins - molecules necessary for building and maintaining organisms.,Three different genes on piece of DNA,“junk” DNA,Background,Promoters are sequences of DNA to which RNA polymerase can bind and begin transcription of a gene. Transcription is the process

    4、 of making a complementary copy of the DNA which is then translated into a protein.,promoter sequence,actual gene information,RNA polymerase binds here and begins transcription,Problem,Knowing gene locations is desirable for medical reasons One way to find genes is to look for promoter regions How d

    5、o we find promoter regions?,One Solution,Promoter regions are highly conserved - different regions often contain similar patterns We can train neural networks to recognize promoter regions We choose a multilayer perceptron,Neural Network Configuration,The multilayer perceptron (MLP) is a very common

    6、 neuralnetwork configuration We used a MLP with 3 layers - an input, output, and hiddenlayer,Number of:,Inputs,Hidden,Output,1,115/58,4,8,16, 20,24,28, 32,Neural Network Configuration,Two ways of presenting input were tried - one used 58 inputs and the other 115 Different numbers of hidden nodes wer

    7、e tried to find the optimally structured neural network Only one output was used to indicate whether the input was a promoter sequence or not (1 or 0, respectively),Neural Network Inputs,The inputs consisted of 106 sets of 57 bases of DNA. 53 were promoters and 53 were not. One of the input promoter

    8、sequences:,TACTAGCAATACGCTTGCGTTCGGTGGTTAAGTATGTATAATGCGCGGGCTTGTCGT,The input was presented to the neural network in two ways:,A 00 C 01 G 10 T 11,A 0.2 C 0.4 G 0.6 T 0.8,114 input neurons,57 input neurons,Neural Network Training,Each configuration was run 10 times. Within each of the 10 runs, 106

    9、runs were performed. For each of these, 105 of the promoter sequences were used for training with the 106th used for testing. The testing sequences were changed for each of the 106 runs so that each sequence was the test sequence only once.Ten runs were necessary since weights for the MLP were initi

    10、alized to random values which might have led to different classifications for the same input sequence.,Hidden Nodes vs. Classification Rate,Scaled Input vs. Classification Rate,Compared to Others,Walker (NN) 78% ONeil (NN) 83% Towell (KBANN) 90% ONeil (Rule-based) 70% ID3 (Decision tree) 76%,Conclus

    11、ion,Not the best but not the worst Using a hybrid technique would improve results The MLP is a very useful tool for the field of bioinformatics,References,Harley, C. B. and Reynolds, R. P. 1987. Analysis of E. coli promoter sequences. Nucleic Acids Research, 15(5):2343-2361. ONeill, M. C. 1991. Trai

    12、ning back-propagation neural networks to define and detect DNA-binding sites. Nucleic Acids Research, 19(2):313-318. Quinlan, J. 1986. Induction of decision trees. Machine Learning, 1:81-106. Towell, G. G., Shavlik, J. W., and Noordewier, M. O. 1990. Refinement of Approximate Domain Theories by Knowledge-Based Neural Networks. AAAI-90, 861-866.,


    注意事项

    本文(Analyzing Promoter Sequences with Multilayer Perceptrons.ppt)为本站会员(赵齐羽)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开