欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Analyzing Attribute Dependencies.ppt

    • 资源ID:378369       资源大小:313KB        全文页数:19页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Analyzing Attribute Dependencies.ppt

    1、Analyzing Attribute Dependencies,Aleks Jakulin & Ivan Bratko Faculty of Computer and Information Science University of Ljubljana Slovenia,Overview,Problem: Generalize the notion of “correlation” from two variables to three or more variables. Approach: Use the Shannons entropy as the foundation for q

    2、uantifying interaction. Application: Visualization, with focus on supervised learning domains. Result: We can explain several “mysteries” of machine learning through higher-order dependencies.,Problem: Attribute Dependencies,Approach: Shannons Entropy,C,A,Interaction Information,I(A;B;C) :=,I(AB;C),

    3、- I(B;C),- I(A;C),= I(A;B|C) - I(A;B),(Partial) history of independent reinventions: McGill 54 (Psychometrika) - interaction informationHan 80 (Information & Control) - multiple mutual informationYeung 91 (IEEE Trans. On Inf. Theory) - mutual informationGrabisch&Roubens 99 (I. J. of Game Theory) - B

    4、anzhaf interaction indexMatsuda 00 (Physical Review E) - higher-order mutual inf.Brenner et al. 00 (Neural Computation) - average synergyDemar 02 (A thesis in machine learning) - relative information gainBell 03 (NIPS02, ICA2003) - co-informationJakulin 03 - interaction gain,Properties,Invariance wi

    5、th respect to attribute/label division: I(A;B;C) = I(A;C;B) = I(C;A;B) = = I(B;A;C) = I(C;B;A) = I(B;C;A). Decomposition of mutual information: I(AB;C) = I(A;C)+I(B;C)+I(A;B;C) I(A;B;C) is “synergistic information.” A, B, C are independent I(A;B;C) = 0.,Positive and Negative Interactions,If any pair

    6、 of the attributes is conditionally independent w/r to a third attribute, the 3-information “neutralizes” the 2-information:I(A;B|C) = 0 I(A;B;C) = -I(A;B) Interaction information may be positive or negative: Positive: XOR problem (A = B C) synergy Negative: conditional independence, redundant attri

    7、butes redundancy Zero: Independence of one of the attributes or a mix of synergy and redundancy.,Applications,Visualization Interaction graphs Interaction dendrograms Model construction Feature construction Feature selection Ensemble construction Evaluation on the CMC domain: predicting contraceptio

    8、n method from demographics.,Interaction Graphs,CMC,Application: Feature Construction,NBC Model Predictive perf.(Brier score)_ 0.2157 0.0013 Wedu, Hedu 0.2087 0.0024 Wedu 0.2068 0.0019 WeduHedu 0.2067 0.0019 Age, Child 0.1951 0.0023 AgeChild 0.1918 0.0026 ACWH 0.1873 0.0027 A, C, W, H 0.1870 0.0030 A

    9、, C, W 0.1850 0.0027 AC, WH 0.1831 0.0032 AC, W 0.1814 0.0033,Alternatives,GBN,NBC,TAN,0.1874 0.0032,0.1815 0.0029,0.1849 0.0028,BEST: 100000 models AC, WH, MediaExp,0.1811 0.0032,Dissimilarity Measures,The relationships between attributes are to some extent transitive. Algorithm: Define a dissimila

    10、rity measure between two attributes in the context of the label C:Apply hierarchical clustering to summarize the dissimilarity matrix.,Interaction Dendrogram,cluster “tightness”,loose,tight,weakly interacting,strongly interacting,Application: Feature Selection,Soybean domain: predict disease from sy

    11、mptoms; predominantly negative interactions. Global optimization procedure for feature selection: 5000 NBC models tested (B-Course),Selected features balance dissimilarity and importance. We can understand what global optimization did from the dendrogram.,Application: Ensembles,Implication: Assumpti

    12、ons in Machine Learning,Work in Progress,Overfitting: the interaction information computations do not account for the increase in complexity. Support for numerical and ordered attributes. Inductive learning algorithms which use these heuristics automatically. Models that are based on the real relationships in the data, not on our assumptions about them.,Summary,There are relationships exclusive to groups of n attributes. Interaction information is a heuristic for quantification of relationships with entropy. Two visualization methods: Interaction graphs Interaction dendrograms,


    注意事项

    本文(Analyzing Attribute Dependencies.ppt)为本站会员(李朗)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开