欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    An EMG Enhanced Impedance and Force ControlFramework .ppt

    • 资源ID:378265       资源大小:1.95MB        全文页数:25页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    An EMG Enhanced Impedance and Force ControlFramework .ppt

    1、An EMG Enhanced Impedance and Force Control Framework for Telerobot Operation in Space,Ning Wang, Chenguang Yang, Michael R. Lyu, and Zhijun Li Dept. of Computer Science & Engineering, The Chinese University of Hong Kong, Hong Kong School of Computing and Mathematics, Plymouth University, United Kin

    2、gdom Key Lab of Autonomous System and Network Control, College of Automation Science and Engineering, South China University of Technology, Guangzhou, China,Outline,Introduction Tele-robotics in space Tele-impedance control EMG signal characteristics Working framework Simulation & demonstration Conc

    3、lusion & future work,2,Whats telerobot?,3,Robotics Deals with design, construction, operation, and application of robots. Interdisciplinarity: control, mechanics, artificial intelligence, etc. Tele-operation Employs automated machines to take the place of humans. Remotely operation from a distance b

    4、y a human operator, rather than following a predetermined sequence of movements. Telerobot Tele-operated robot.,Telerobot operation challenge,4,Local human operator and remote autonomous robot Exchange of force and position signals, i.e., haptic feedback. Long-range communications suffer from time d

    5、elay.Big challenge Delayed transmission of haptic signals lead to instability in robot control. Possible solutions? Wave scattering, passivity, small gain theorem, etc. Remains a difficulty.,Control instability!,Telerobot operation status quo,5,In space Requiring stability. Handling unpredictable en

    6、vironments. Neural path of human being also subject to time delay. In presence of time delay, Human neural control can easily maintain stability. Humans show even superior manipulation skills in unstable interactions. Transfer skills from human operator to robot! Tele-impedance Operation stability o

    7、f humans comes from adjusting mechanical impedance. Transferring a human operators muscle impedance to a telerobot.,Principle of tele-impedance,6,Tele-impedance using electromyogram (EMG) (Ajoudani et al., 2011). Estimating stiffness and force from EMG signal. Transferring impedance from human opera

    8、tor to robot.,Reference task trajectory: qr(t), t0,T. Impedance and feed-forward torque:with minimal feedback,Control strategy,7,Research focus,8,Real-time extraction and processing of EMG. On-line estimation of human muscle impedance and force. Performance demonstration in simulated unstable scenar

    9、io.,EMG signal,9,Physiological signal generated by muscle cells. Reflects human muscle activations and tensions. Long been utilized for human motor control. Suitable for extracting force and impedance of human muscles.,How to acquire EMG data?,Data recording Noninvasive electrodes. Bi-dimensional el

    10、ectrical field on the skin surface. Generated by summation of motor unit action potentials (MUAP). Surface EMG,10,Amplitude and frequency properties in EMG,An EMG signal is typically a train of MUAP. A band-limited signal that describes the kth EMG wave is characterized by two sequences:- amplitude;

    11、 - phase. AM-FM Signal modeling Signal decomposition. Primary component identification: amplitude A(n) and frequency (n).,11,Observations: EMG signal decomposition,12,EMG & decomposed waves in 5 frequency bands: Band 1: 10-100 Hz Band2: 100-200 Hz Band3: 200-300 Hz Band4: 300-400 Hz Band5: 400-500 H

    12、z,Observations: primary EMG components,13,Instantaneous amplitude estimate A(n) and frequency estimate (n) in the decomposed EMG waves,Working Framework,14,EMG enhanced impedance and force control based tele-operation system in a typical aerospace operation scenario.,How to estimate stiffness from E

    13、MG?,15,Human muscles and tendons act as a spring-damper system during movement. Changing stiffness via co-activation of antagonistic muscle pairs. Tele-operation by adjusting co-activations and corresponding endpoint stiffness profile (Ajoudani et al., 2011). Discarding up to 99% of EMG signal power

    14、 before estimation (Potvin et al., 2003). involving only 400-500 Hz (Band 5)!,Stiffness estimation formulation,16,Endpoint forces in Cartesian coordinates: , and Processed EMG amplitudes in 400-500 Hz band At ith agonist muscle: At jth antagonist muscle: Parameter set:,Assuming linear mapping betwee

    15、n muscle tensions and surface EMG,Stiffness estimation method,17,Iterative least squares (LS) approach to achieve online estimation of parameter set . Online endpoint force and stiffness estimation. Based on proportional muscle stiffness-torque relationship. Expressions under Cartesian coordinates,F

    16、orce estimation,18,The key idea: Filter most of the low frequency power of the EMG signal, i.e., use only Band 5 EMG signal. Nonlinearly normalizedWith is obtained by linearly normalized to 100% of the maximum.Involved muscles: FCR (flexor carpi radialis), ECR (extensor carpi radialis),Simulation,19

    17、,Experimental set-up: Two-joint simulated robot arm with the first joint motionless. Right wrist of human operator in charge of simulated robot arm. Motion reference trajectory at initial position. Implemented using Matlab Robotics Toolbox in Simulink.,Demonstration,20,Observations on result,21,Stif

    18、fness K and damping rate D: Stiffness K and damping rate D enlarged dramatically after impedance increase.,Observations on result,22,Angle shifting of simulated robot arm from reference trajectory (initial position at 0 radian). Shifting angle reduced greatly after impedance increase.,Conclusions,23

    19、,Transferring muscle impedance from human to robot introduced for reducing instability and enhancing control performance of tele-operation. Real time processing of EMG signal proposed for impedance and force estimation. Integrated framework built for the telerobot in aerospace applications to fully

    20、capture operators control skills. Promising demonstration results shown for impedance control in simulated scenario.,Whats the next step?,24,Complete experimental studies on physical robot arm is planned to carry out to test and validate the framework proposed in this paper.,25,Thank you very much! Q & A,


    注意事项

    本文(An EMG Enhanced Impedance and Force ControlFramework .ppt)为本站会员(brainfellow396)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开