欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    An Efficient Multi-Dimensional Index for Cloud DataMan.ppt

    • 资源ID:378262       资源大小:740.67KB        全文页数:34页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    An Efficient Multi-Dimensional Index for Cloud DataMan.ppt

    1、An Efficient Multi-Dimensional Index for Cloud Data Management,Xiangyu Zhang Jing Ai Zhongyuan Wang Jiaheng Lu Xiaofeng Meng School of Information Renmin University of China,Outline,Motivation Query Answering on the Cloud Related Work EMINC: Index the Cloud Efficiently Node Bounding Extended Node Bo

    2、unding Cost Estimation based Index Update Evaluation Conclusion & Future Work,Outline,Motivation Query Answering on the Cloud Related Work EMINC: Index the Cloud Efficiently Node Bounding Extended Node Bounding Cost Estimation based Index Update Evaluation Conclusion & Future Work,Motivation,Cloud s

    3、ystems have been justified as brilliant for web search applications Simple structure, mostly key-value pairs Flexible, efficient for analytic work However, they are insufficient for complex data management needs No powerful language as SQL Hard to process complex queries Lack of efficient index stru

    4、ctures,Distributed Cloud base?,BigTable,HBase,How to query on other attributes besides primary key?,Motivation,As part of our Cloud-based DBMS project, we aim to build efficient index structure on the Cloud.,Outline,Motivation Query Answering on the Cloud Related Work EMINC: Index the Cloud Efficien

    5、tly Node Bounding Extended Node Bounding Cost Estimation based Index Update Evaluation Conclusion & Future Work,Query Answering in the Cloud,Fast locating of relevant slave nodes,Efficient lookup on each slave nodes,Outline,Motivation Query Answering on the Cloud Related Work EMINC: Index the Cloud

    6、Efficiently Node Bounding Extended Node Bounding Cost Estimation based Index Update Evaluation Conclusion & Future Work,Related Work,S. Wu and K.-L. Wu, “An indexing framework for efficient retrieval on the cloud,” IEEE Data Eng. Bull., vol. 32, pp.7582, 2009.H. chih Yang and D. S. Parker, “Traverse

    7、: Simplified indexing on large map-reduce-merge clusters,” in Proceedings of DASFAA 2009, Brisbane, Australia, April 2009, pp. 308322.M. K. Aguilera, W. Golab, and M. A. Shah, “A practical scalable distributed b-tree,” in Proceedings of VLDB08, Auckland, New Zealand, August 2008, pp. 598609.,Distrib

    8、uted Database,Data slicing in DDBS Horizontal, vertical, etc. Slice based on conditions Check condition conflict on query processing Data distribution on the Cloud is different and could be very complex if expressed as set of conditions Condition check is too expensive,Outline,Motivation Query Answe

    9、ring on the Cloud Related Work EMINC: Index the Cloud Efficiently Node Bounding Extended Node Bounding Cost Estimation based Index Update Evaluation Conclusion & Future Work,Outline,Motivation Query Answering on the Cloud Related Work EMINC: Index the Cloud Efficiently Node Bounding Extended Node Bo

    10、unding Cost Estimation based Index Update Evaluation Conclusion & Future Work,EMINC: Node Bounding,Node cube of a table on a slave node Value range of table on this node,Node Cube: (1,1), (6,10),EMINC: Architecture,Each leaf node corresponds to one node cube,Use KD-Tree to maintain local index on sl

    11、ave nodes,EMINC: Query Processing,Get query cube of the query and look up in the R-Tree to get relevant data nodes 1 Query Cube: (1,3),(2,4),Yes,No,Node Cube,Query Cube,Node Cube,Query Cube,Outline,Motivation Query Answering on the Cloud Related Work EMINC: Index the Cloud Efficiently Node Bounding

    12、Extended Node Bounding Cost Estimation based Index Update Evaluation Conclusion & Future Work,EMINC: Extended Node Bounding,Problem with single bounding Bad performance for sparse node,Many queries will be mislead to this node,EMINC: Cube Cutting,Single Node Cube with Low Accuracy,Multiple Node Cube

    13、 with High Accuracy,EMINC: Cube Methods,Random cutting,Equal cutting,Clustering-based cutting,Outline,Motivation Query Answering on the Cloud Related Work EMINC: Index the Cloud Efficiently Node Bounding Extended Node Bounding Cost Estimation based Index Update Evaluation Conclusion & Future Work,EM

    14、INC: Index Update Strategy,Index update issues: Cubes may invalidate themselves after certain data update, thus need reconstruction Insertion invalidates cube Create a node cube containing new data For regular maintenance of index Cost estimation based update strategy,EMINC: Cost Estimation Strategy

    15、,Cost of index update: Recalculate cubes on local node Transfer to master node and maintain R-Tree Query performance will be affected Benefit of index update: More accurate query directing, less waste,EMINC: Two Phase Method,After one update: Wait for a time period of deltaT deltaT expires, check if

    16、 an update is needed Determin deltaT Check for update Assumption :,Number of queries to be processed,Total size of node cubes of this node,EMINC: Phase One,After pervious update: benefit = decrement-of-query/time* deltaT We enjoy the benefit of pervious update for deltaT time period cost = number-of

    17、-queries missed Number of queries we could process if we use pervious update time to answer queries,EMINC: Phase Two,benefit cost = deltaT After deltaT expires, check if an update is needed. This check involves following: Record update frequency Expected benefit ratio Performance requirement We leav

    18、e this as future work,Outline,Motivation Query Answering on the Cloud Related Work EMINC: Index the Cloud Efficiently Node Bounding Extended Node Bounding Cost Estimation based Index Update Evaluation Conclusion & Future Work,Evaluation,6 machines 1 as master node 5 slave nodes simulating 1001000 no

    19、des Each machine had a 2.33GHz Intel Core2 Quad CPU, 4GB of main memory, and a 320G disk. Machines ran Ubuntu 9.04 Server OS.,Evaluation: Point Query,Evaluation: Range Query,Outline,Motivation Query Answering on the Cloud Related Work EMINC: Index the Cloud Efficiently Node Bounding Extended Node Bo

    20、unding Cost Estimation based Index Update Evaluation Conclusion & Future Work,Conclusion,In this paper we presented a series of approaches on building efficient multi-dimensional index on Cloud platform. We developed the node bounding technique to reduce query processing cost on the cloud platform.

    21、In order to maintain efficiency of the index, we proposed a cost estimation-based approach for index update.,Future Work,Complete cost estimation model Take replication of data into consideration Implement in Hbase to further verify performance,Thanks,Please visit our lab for more information: http:/


    注意事项

    本文(An Efficient Multi-Dimensional Index for Cloud DataMan.ppt)为本站会员(tireattitude366)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开