欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Algebraic Techniques To Enhance Common Sub-expression .ppt

    • 资源ID:378177       资源大小:943.50KB        全文页数:24页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Algebraic Techniques To Enhance Common Sub-expression .ppt

    1、Algebraic Techniques To Enhance Common Sub-expression Extraction for Polynomial System Synthesis,Sivaram Gopalakrishnan Synopsys Inc., Hillsboro, OR 97124Priyank Kalla Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT- 84112,Outline,Problem context: Polynomial

    2、 datapath synthesis Our Focus: Integrating CSE and Algebraic methods Applications: DSP for audio, video, multimedia. Motivation Previous Work and Limitations Integrated Approach Square-free factorization Common Coefficient Extraction Common Cube Extraction Algebraic Division Results: Area Optimizati

    3、on Conclusions & Future Work,The Synthesis Flow,Polynomial representation?,Quadratic filter design for polynomial signal processingy = a0 . x12 + a1 . x1 + b0 . x02 + b1 . x0 + c . x0 . x1,Motivation,P1 = x2 + 6xy + 9y2 P2 = 4xy2 + 12y3 P3 = 2zx2 + 6xyz P1 = x(x+ 6y) + 9y2 P2 = 4xy2 + 12y3 P3 = x(2z

    4、x + 6yz)P1 = x(x+ 6y) + 9y2 P2 = y2(4x+ 12y) P3 = xz(2x + 6y),Direct Implementation 17 Mults & 4 Adds,Horner form 15 Mults & 4 Adds,Factorization + CSE 12 Mults & 4 Adds,Motivation,d1 = x + 3y P1 = d12 P2 = 4d1y2 P3 = 2xzd1 d1 is a good building blockHow to identify such building blocks across multi

    5、ple polynomial datapaths?Need an methodology to expose many common expressions!,Our Approach 8 Mults & 1 Add,Conventional Methods,Extracting control-dataflow graphs (CDFGs) from RTL Scheduling Resource sharing Retiming Control synthesis Algebraic Transforms for arithmetic designs Factorization Hosan

    6、gadi et al, ICCAD 04 Common Sub-expression Elimination Hosangadi et al, VLSI 05 Term-rewriting Arvind et al, IEEE. Micro 98 Tree-Height Reduction De Micheli 94 Lack of symbolic computer algebra manipulation,Conventional Methods,Kernel/Co-kernel Extraction (Factorization + CSE) Integrates CSE with cu

    7、be/coefficient extraction Uses coefficients and variables to identify cubes (co-kernels)to obtain kernels Subsequently uses CSE for further optimizationP = 5x2 + 10y3 + 15pq; Uses 5, 10, 15, x, y, p, q for kernel/co-kernel extraction Does not perform algebraic division Cannot determine decomposition

    8、 5(x2 + 2y3 + 3pq)P = x2 + 2xy + y2; - (x+y)2 Cannot determine the above decomposition,Symbolic algebra techniques,Polynomial models for complex computational blocksGuiding Synthesis engines using Grbners basis Peymandoust and De Micheli, TCAD 02 Given polynomial F and Library elements F = h1 I1 + +

    9、 hn In Restricted to library elementsDatapath optimization using word-length informationGopalakrishnan et al, ICCAD 07 Restricted to fixed-size datapaths Cannot address systems of polynomials,Optimization techniques,Canonical Form representation ckYk ck : Coefficient in the range (0 ck bk) Yk : Fall

    10、ing factorial F = 3x2y2 - 3x2y - 3xy2 + 3xy = 3x(x-1)y(y-1)f1 = 5x3y2 - 5x3y - 15x2y2 + 15x2y + 10xy2 - 10xy + 3z2 f2 = 3x2y2 - 3x2y - 3xy2 + 3xy + z + 1d1 = x(x-1)y(y-1) f1 = 5d1(x-2) + 3z2 f2 = 3d1 + z + 1,Optimization techniques,Square-free factorizationLet F be an integral domain Z A polynomial

    11、u in Fx is square-free if there is no polynomial v in Fx with deg(v, x) 0, such that v2 | u.u1 = x2 + 3x + 2; u1 = (x+1)(x+2) is square-free u2 = x4 + 7x3 + 18x2 + 20x + 8;u2 = (x+1)(x+2)2 is not square-free!,Optimization techniques,Common Coefficient Extraction P = 8x + 16y + 24z; P1 = 2(4x + 8y +

    12、12z); P2 = 4(2x + 4y + 6z); P3 = 8(x + 2y + 3z); best transformationUse GCD computation Get the coefficients (ais) Compute GCD of every pair (ai, aj) Retain GCDs atleast (ai, aj) Arrange GCDs in decreasing order, perform extraction Update GCD list and continue,Optimization techniques,Common Coeffici

    13、ent Extraction (Example) P = 8x + 16y + 24z + 15a + 30b; Coefficients 8, 16, 24, 15, 30 GCD list 8, 8, 1, 2, 8, 1, 2, 1, 6, 15 Reduced GCD list 8, 15 - decreasing order 15, 8Extracting 15 results in P = 8x + 16y + 24z + 15(a + 2b);Similarly, extracting 8 results in P = 8(x + 2y + 3z) + 15(a + 2b);,O

    14、ptimization techniques,Common Cube Extraction Similar to kernel/co-kernel extraction (for variables) P1 = x2y + xyz; P2 = ab2c3 + b2c2x; P3 = axz + x2z2b; kernel/co-kernel extraction results in P1 = xy(x + z); P2 = b2c2(ac + x); P3 = xz(a + xzb);,Optimization techniques,Polynomial long divisionGiven

    15、 two polynomials a(x) and b(x), algebraic division determines q(x) and r(x) such thata(x) = b(x) q(x) + r(x)a(x) = x4 - 2x3 + 5; b(x) = x2 + 3x - 2;a(x) = b(x) (x2 5x + 17) 61x + 39 q(x) r(x),Optimization techniques,Common Sub-Expression EliminationIdentify isomorphic patterns in an arithmetic expre

    16、ssion tree and merge them!k = x + y; m = x + y + z; n = xy + x + y;k = x + y; m = k + z; n = xy + k;,Integrated approach,Input: The polynomial system Porig (list of arrays) Perform Canonization, Square-free factorization Get best initial cost: Cinitial Perform Coefficient extraction: Pcce Perform cu

    17、be extraction: Pcce_cube, get linear blocks Get the lists representing the system For every linear block, for each list perform algebraic division Pick the best cost,Illustration,Integrated approach (Example),P1 = 13x2 + 26xy + 13y2 + 7x - 7y + 11; P2 = 15x2 - 30xy + 15y2 + 11x + 11y + 9; PorigSquar

    18、e-free factorization does not work! Initial cost: 16 M and 10 AAfter common coefficient extraction (Pcce) P1 = 13(x2 + 2xy + y2) + 7(x y) + 11; P2 = 15(x2 - 2xy + y2) + 11(x + y) + 9; Linear blocks: (x y), (x + y),Integrated approach (Example),After common cube extraction (Pcce_cube) P1 = 13(x(x + 2

    19、y) + y2) + 7(x y) + 11; P2 = 15(x(x- 2y) + y2) + 11(x + y) + 9; Linear blocks: (x y), (x + y), (x + 2y), (x 2y)Perform algebraic division using the linear blocksPcce is the best cost implementation with (x+y) (x-y)d1 = x + y; d2 = x - y; P1 = 13d12 + 7d2 + 11; P2 = 15d22 + 11d1 + 9; Cost: 6 M and 6

    20、A,Results,Average area improvement: 42%,Results,Average area improvement: 42%,Conclusions & Future Work,Polynomial decomposition approach for arithmetic datapaths Arithmetic datapaths modeled as polynomial systems Integrating CSE with algebraic manipulation Performing algebraic decomposition to enhance the power of CSEImpressive area savings But delay penalty!Future Work: Address the concerns in delay!Retarget the approach towards power savings?,Questions?,


    注意事项

    本文(Algebraic Techniques To Enhance Common Sub-expression .ppt)为本站会员(sofeeling205)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开