欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Advances in Random Matrix Theory-Let there be tools.ppt

    • 资源ID:378091       资源大小:1.51MB        全文页数:47页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Advances in Random Matrix Theory-Let there be tools.ppt

    1、10/9/2018,1,Advances in Random Matrix Theory: Let there be tools,Alan Edelman Brian Sutton, Plamen Koev, Ioana Dumitriu, Raj Rao and others MIT: Dept of Mathematics, Computer Science AI Laboratories World Congress, Bernoulli Society Barcelona, Spain Wednesday July 28, 2004,10/9/2018,2,Message,Ingred

    2、ient: Take Any important mathematics Then Randomize! This will have many applications! We cant keep this in the hands of specialists anymore: Need tools!,10/9/2018,3,Tools,So many applications Random matrix theory: catalyst for 21st century special functions, analytical techniques, statistical techn

    3、iques In addition to mathematics and papers Need tools for the novice! Need tools for the engineers! Need tools for the specialists!,10/9/2018,4,Themes of this talk,Tools for general beta What is beta? Think of it as a measure of (inverse) volatility in “classical” random matrices. Tools for complic

    4、ated derived random matrices Tools for numerical computation and simulation,5,Wigners Semi-Circle,The classical S known as the Gaussian Orthogonal Ensemble Normalized eigenvalue histogram is a semi-circle Precise statements require n etc.,n=20; s=30000; d=.05; %matrix size, samples, sample dist e=;

    5、%gather up eigenvalues im=1; %imaginary(1) or real(0) for i=1:s,a=randn(n)+im*sqrt(-1)*randn(n);a=(a+a)/(2*sqrt(2*n*(im+1); v=eig(a); e=e v; end hold off; m x=hist(e,-1.5:d:1.5); bar(x,m*pi/(2*d*n*s); axis(square); axis(-1.5 1.5 -1 2); hold on; t=-1:.01:1; plot(t,sqrt(1-t.2),r);,10/9/2018,6,sym matr

    6、ix to tridiagonal form,Same eigenvalue distribution as GOE:O(n) storage ! O(n2) compute,10/9/2018,7,General beta,beta: 1: reals 2: complexes 4: quaternions,Bidiagonal Version corresponds To Wishart matrices of Statistics,10/9/2018,8,Tools,Motivation: A condition number problem Jack & Hypergeometric

    7、of Matrix Argument MOPS: Ioana Dumitrius talk The Polynomial Method The tridiagonal numerical 109 trick,10/9/2018,9,Tools,Motivation: A condition number problem Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitrius talk The Polynomial Method The tridiagonal numerical 109 trick,10/9/2018,10,

    8、Numerical Analysis: Condition Numbers,(A) = “condition number of A” If A=UV is the svd, then (A) = max/min . Alternatively, (A) = max (AA)/ min (AA) One number that measures digits lost in finite precision and general matrix “badness” Small=good Large=bad The condition of a random matrix?,10/9/2018,

    9、11,Von Neumann & co.,Solve Ax=b via x= (AA) -1A bM A-1Matrix Residual: |AM-I|2|AM-I|2 2002 n How should we estimate ?Assume, as a model, that the elements of A are independent standard normals!,10/9/2018,12,Von Neumann & co. estimates (1947-1951),“For a random matrix of order n the expectation value

    10、 has been shown to be about n”Goldstine, von Neumann“ we choose two different values of , namely n and 10n”Bargmann, Montgomery, vN“With a probability 1 10n”Goldstine, von Neumann,X ,10/9/2018,13,Random cond numbers, n,Distribution of /n,Experiment with n=200,10/9/2018,14,Finite n,n=10 n=25n=50 n=10

    11、0,10/9/2018,15,Condition Number Distributions,P(/n x) 2/x,P(/n2 x) 4/x2,Real n x n, n,Complex n x n, n,Generalizations: : 1=real, 2=complex finite matrices rectangular: m x n,10/9/2018,16,Condition Number Distributions,P(/n x) 2/x,P(/n2 x) 4/x2,Real n x n, n,Complex n x n, n,Square, n: P(/n x) (2-1/

    12、()/x (All Betas!) General Formula: P(x) C/x (n-m+1),where = (n-m+1)/2th moment of the largest eigenvalue of Wm-1,n+1 ()and C is a known geometrical constant.Density for the largest eig of W is known in terms of 1F1(/2)(n+1), (/2)(n+m-1); -(x/2)Im-1) from which is availableTracy-Widom law applies pro

    13、bably all beta for large m,n. Johnstone shows at least beta=1,2.,10/9/2018,17,Tools,Motivation: A condition number problem Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitrius talk The Polynomial Method The tridiagonal numerical 109 trick,10/9/2018,18,Multivariate Orthogonal Polynomials &

    14、Hypergeometrics of Matrix Argument,Ioana Dumitrius talk The important special functions of the 21st century Begin with w(x) on I p(x)p(x) (x) i w(xi)dxi = Jack Polynomials orthogonal for w=1 on the unit circle. Analogs of xm,10/9/2018,19,Multivariate Hypergeometric Functions,10/9/2018,20,Multivariat

    15、e Hypergeometric Functions,10/9/2018,21,Wishart (Laguerre) Matrices!,10/9/2018,22,Plamens clever idea,10/9/2018,23,Tools,Motivation: A condition number problem Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitrius talk The Polynomial Method The tridiagonal numerical 109 trick,10/9/2018,24,M

    16、ops (Dumitriu etc.) Symbolic,10/9/2018,25,A=randn(n); S=(A+A)/2; trace(S4),det(S3),Symbolic MOPS applications,10/9/2018,26,Symbolic MOPS applications,=3; hist(eig(S),10/9/2018,27,Smallest eigenvalue statistics,A=randn(m,n); hist(min(svd(A).2),10/9/2018,28,Tools,Motivation: A condition number problem

    17、 Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitrius talk The Polynomial Method - Raj! The tridiagonal numerical 109 trick,10/9/2018,29,RM Tool Raj!,Courtesy of the Polynomial Method,10/9/2018,30,10/9/2018,31,The Riemann Zeta Function,On the real line with x1, for example,May be analytica

    18、lly extended to the complex plane, with singularity only at x=1.,10/9/2018,32,-3 -2 -1 0 1 2 3,The Riemann Hypothesis,All nontrivial roots of (x) satisfy Re(x)=1/2. (Trivial roots at negative even integers.),10/9/2018,33,-3 -2 -1 0 1 2 3,The Riemann Hypothesis,All nontrivial roots of (x) satisfy Re(

    19、x)=1/2. (Trivial roots at negative even integers.),|(x)| along Re(x)=1/2,Zeros =.5+i*14.134725142 21.022039639 25.010857580 30.424876126 32.935061588 37.586178159 40.918719012 43.327073281 48.005150881 49.773832478 52.970321478 56.446247697 59.347044003,10/9/2018,34,Computation of Zeros,Odlyzkos fan

    20、tastic computation of 10k+1 through 10k+10,000 for k=12,21,22.See http:/ behave like the eigenvalues of A=randn(n)+i*randn(n); S=(A+A)/2;,10/9/2018,35,Nearest Neighbor Spacings & Pairwise Correlation Functions,10/9/2018,36,Painlev Equations,10/9/2018,37,Spacings,Take a large collection of consecutiv

    21、e zeros/eigenvalues. Normalize so that average spacing = 1. Spacing Function = Histogram of consecutive differences (the (k+1)st the kth) Pairwise Correlation Function = Histogram of all possible differences (the kth the jth) Conjecture: These functions are the same for random matrices and Riemann z

    22、eta,10/9/2018,38,Tools,Motivation: A condition number problem Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitrius talk The Polynomial Method The tridiagonal numerical 109 trick,10/9/2018,39,Everyones Favorite Tridiagonal,10/9/2018,40,Everyones Favorite Tridiagonal,1 (n)1/2,+,+,10/9/2018,4

    23、1,Stochastic Operator Limit,10/9/2018,42,Largest Eigenvalue Plots,10/9/2018,43,MATLAB,beta=1; n=1e9; opts.disp=0;opts.issym=1; alpha=10; k=round(alpha*n(1/3); % cutoff parameters d=sqrt(chi2rnd( beta*(n:-1:(n-k-1); H=spdiags( d,1,k,k)+spdiags(randn(k,1),0,k,k); H=(H+H)/sqrt(4*n*beta); eigs(H,1,1,opt

    24、s),10/9/2018,44,Tricks to get O(n9) speedup,Sparse matrix storage (Only O(n) storage is used) Tridiagonal Ensemble Formulas (Any beta is available due to the tridiagonal ensemble)The Lanczos Algorithm for Eigenvalue Computation ( This allows the computation of the extreme eigenvalue faster than typi

    25、cal general purpose eigensolvers.) The shift-and-invert accelerator to Lanczos and Arnoldi (Since we know the eigenvalues are near 1, we can accelerate the convergence of the largest eigenvalue) The ARPACK software package as made available seamlessly in MATLAB (The Arnoldi package contains state of

    26、 the art data structures and numerical choices.) The observation that if k = 10n1/3 , then the largest eigenvalue is determined numerically by the top k k segment of n. (This is an interesting mathematical statement related to the decay of the Airy function.),10/9/2018,45,Level Densities,10/9/2018,46,Open Problems,The distribution for general beta Seems to be governed by a convection-diffusion equation,10/9/2018,47,Random matrix tools!,


    注意事项

    本文(Advances in Random Matrix Theory-Let there be tools.ppt)为本站会员(周芸)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开