欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Adaptive Information Processing- An Effective Way to Improve .ppt

    • 资源ID:378033       资源大小:171.50KB        全文页数:13页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Adaptive Information Processing- An Effective Way to Improve .ppt

    1、Adaptive Information Processing: An Effective Way to Improve Perceptron Predictors,Hongliang Gao Huiyang Zhou,University of Central Florida,2,Information system model,Source (program),Information:Br addressBr historyBr typeOther run time info.,Informationvector,Information processor,PredictorFSMsPer

    2、ceptrons 2,Information system model by Chen et. al. ASPLOS-VII. Key observations Shortcomings: Fixed information vector while different workloads/branches need different information data. Perceptron weights Correlation Assemble information vector to maximize correlation,Our contribution Re-assemble

    3、the information vector based on correlation (weights) Performed at a coarse grain, so it is not latency critical,University of Central Florida,3,Adaptive Information Processing,Profile-directed adaptation Correlation-directed adaptation,Perceptron Predictor,Fixed,GHR,LHR,PC,Information,University of

    4、 Central Florida,4,Profile-directed adaptation, ,w0 table,wt table 1,wt table 2,wt table N,Prediction = sign(y),y,GHR,LHR table,weights,weights,weights,PC,Information,Information vector,4,Update Logic,University of Central Florida,5,Profile-directed adaptation,Workload Detector,type, ,INT,FP,MM,SERV

    5、,Table 1,Table 2,Table N,G0:3 XOR G4:7,University of Central Florida,6,Workload Detector,Detection criteria SERV: a large number of static branchesFP: a small number of static branches,a high number of floating point operation, and a high number of instructions using XMM registersMM: a medium number

    6、 of static branches, a medium number of floating point operation, and a medium number of instructions using XMM registersINT: default,Workload Detector,type,Source (program),Run time info:# of fp instsXMM accesses# of static br,University of Central Florida,7,Correlation-directed adaptation, , ,w0 t

    7、able,wt table 1,wt table 2,wt table N,Prediction = sign(y),y,GHR,LHR table,weights,weights,weights,PC,Information,Information vector,type,4,type,4,Workload Detector,type,Update Logic,University of Central Florida,8,Correlation-directed adaptation, , ,GHR,LHR table,weights,weights,weights,PC,Informat

    8、ion,Information vector,4,4,type,4,type,4,Information feeding logic,MUX2,4,4,MUX1,4,4,type (INT),Workload Detector,type,PC,LHR,Sum1,Sum2,SumN,Large Sum1 = strong correlation with PC bits Small SumN = weak correlation with certain GHR bits cN PC = more PC bits,Table 1,Table 2,Table N,PC,University of

    9、Central Florida,9,Overall scheme,Loop branch predictor,PC,tag,loop count,taken count,confidence,LRU,PC,Bias branch predictor,GHR,LHR table,PC,MAC perceptron predictor,workload detector,runtime info.,initial (predict NT),always NT (predict NT),always Taken(predict T),Not biased (use other predictors)

    10、,loop hit,loop prediction,loop hit,NT,Taken,loop prediction,prediction,prediction,University of Central Florida,10,Summary,Observations Different workloads/branches need different information. Perceptron weights Correlation Contributions Profile-directed adaptation Correlation-directed adaptation Re

    11、ducing aliasing from bias and loop branches Result Significant improvement,Thank you and Questions?,University of Central Florida,12,References,1 I. K. Chen, J. T. Coffey, and T. N. Mudge, “Analysis of branch prediction via data compression”, Proc. of the 7th Int. Conf. on Arch. Support for Programm

    12、ing Languages and Operating Systems (ASPLOS-VII), 1996. 2 D. Jimenez and C. Lin, “Dynamic branch prediction with perceptrons”, Proc. of the 7th Int. Symp. on High Perf. Comp. Arch (HPCA-7), 2001. 3 D. Jimenez and C. Lin, “Neural methods for dynamic branch prediction”, ACM Trans. on Computer Systems,

    13、 2002. 4 S. MacFarling, “Combining branch predictors”, Technical Report, DEC, 1993. 5 A. Seznec, “Revisiting the perceptron predictor”, Technical Report, IRISA, 2004. 6 T.-Y. Yeh and Y. Patt, “Alternative implementations of two-level adaptive branch prediction”, Proc. of the 22nd Int. Symp. on Comp. Arch (ISCA-22), 1995.,University of Central Florida,13,Predictor configuration,


    注意事项

    本文(Adaptive Information Processing- An Effective Way to Improve .ppt)为本站会员(fuellot230)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开