欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    A Proportional Odds Model with Time-varying Covariates.ppt

    • 资源ID:377868       资源大小:591.50KB        全文页数:27页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    A Proportional Odds Model with Time-varying Covariates.ppt

    1、A Proportional Odds Model with Time-varying Covariates,Logistic Regression Model,Logistic regression model when outcome is binaryHow do we extend the logistic regression model for time-to-event outcome? It depends on how we view the time progression,Time Progression,Extend Logistic Regression Model,

    2、Renewal time progression Efron (1988, JASA) “Logistic-Regression, Survival Analysis and the Kaplan-Meier Curve” Suppose time is counted by months : # of patients at risk at the beginning of month : # of patients who die during month Assume that,Extend Logistics Regression Model,Cox proportional haza

    3、rds modelInterpretation of the regression parameter Instantaneous hazards ratio In terms of cumulative event rates,Extend Logistics Regression Model,So, why this happens? nonlinearity The fundamental issue is how we deal with different denominators of summing fractionsWhat if we always count the cum

    4、ulative events from time zero Common denominator,Proportional Odds Model,Logistic regression modelProportional odds model with time-varying covariates at time : Yang & Prentice (1999, JASA),Proportional Odds Model,Yang-Prentice PO Model Model closed under log-logisitic distributions Interpretation o

    5、f regression parameter Without time-varying covariates Special case of the transformation models when the error term follows standard logistic distribution with unspecified transformationRank estimation: Cheng, et al. (1995, Bmka) NPMLE,Proportional Odds Model,Transformation models with time-varying

    6、 covariates Kosorok, et al. (2004, Ann Stat)is some frailty-induced Laplace transform Zeng 2007, JRSS-B)is some known transformation, e.g., Box-Cox transformation These models are not the Yang-Prentice models when the same error distributions/transformation would be chosen to obtain the proportional

    7、 odds model without time-varying covariates,Yang-Prentice Proportional Odds Model,Yang & Prentice (1999, JASA) Inference procedures developed mostly without time-varying covariates Time-varying covariates,Estimation of Yang-Prentice PO Model,By way of integral equation for baseline odds function Und

    8、er Yang-Prentice PO model, individual hazard function isTherefore, Then we can solve it to get,Estimation of Yang-Prentice PO Model,With time-varying covariates,Estimation by Differential Equations,ConsiderLet,Estimating Equations for Baseline Function,Assume that we know,Estimation of Baseline func

    9、tion,Then we solve to obtain a closed form solution for baseline odds functionMoreoverThis shall lead to consistency and asymptotic normality of this baseline odds function estimator with true regression parameter,Estimation of Regression Parameters,Estimating equations for regression parametersor W

    10、e can obtain all the necessary asymptotic properties of Straightforward to extend to weighted estimation,Consideration of Optimal Estimation,Hazard function under Yang-Prentice PO ModelA form of optimal weight function in weighted estimation is calculated as,Simulation Studies,Simulation setup,Data

    11、Analysis,VA Lung Cancer Clinical Trial (Prentice, 1973, Bmka) Subgroup of 97 patients lung cancer survival with two covariates Performance score Tumor type Bennett (1983, Stat Med) justified the PO model by a visual assessment of survival functions of dichotomized performance score Most of the work

    12、analyzed this data without model checking. We include covariates and time interaction as time-varying covariates to serve this purpose,Discussion,More thoughts on the PO model Drug resistance or viral mutation Weaning of breastfeeding in mother-to-child transmission When-to-start design Trial monito

    13、ring Sequential methods,More thoughts on Cox Model,Without time-varying covariatesExpressed in survival functionsComplementary log-log Interpretation of rate ratio, c.f. odds ratio in the PO model,An Infectious Disease Model,Assume constant probability of infection per contact HIV infection: per sex

    14、ual contact, per breastfeeding, per needle exchange, per blood transfusion Probability of no infection after an average contactsWhen average contact is associated with covariates by a log-linear model , and becomes the cumulative incidences over a period of time , it becomes a Cox model,Cox Model with Time-varying Covariates,With time-varying covariatesc.f. the usual Cox model with time-varying covariates,Generalized Linear Risk Model,With time-varying covariates: functional operator link,


    注意事项

    本文(A Proportional Odds Model with Time-varying Covariates.ppt)为本站会员(hopesteam270)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开