欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    A Practical Guide to SVM.ppt

    • 资源ID:377866       资源大小:170KB        全文页数:18页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    A Practical Guide to SVM.ppt

    1、A Practical Guide to SVM,Yihua Liao Dept. of Computer Science 2/3/03,Outline,Support vector machine basics GIST LIBSVM (SVMLight),Classification problems,Given: n training pairs, (, yi), where=(xi1, xi2,xil) is an input vector, and yi=+1/-1, corresponding classification H+ /H- Out: A label y for a n

    2、ew vector x,Support vector machines,Goal: to find discriminator That maximize the margins,A little math,Primal problem,Decision function,Example,Functional classifications of Yeast genes based on DNA microarray expression data. Training dataset genes that are known to have the same Function f genes

    3、that are known to have a different function than f,Gist,http:/microarray.cpmc.columbia.edu/gist/ Developed by William Stafford Noble etc. Contains tools for SVM classification, feature selection and kernel principal components analysis. Linux/Solaris. Installation is straightforward.,Data files,Samp

    4、le.mtx (tab-delimited, same for testing) gene alpha_0X alpha_7X alpha_14X alpha_21X YMR300C -0.1 0.82 0.25 -0.51 YAL003W 0.01 -0.56 0.25 -0.17 YAL010C -0.2 -0.01 -0.01 -0.36 Sample.labels gene Respiration_chain_complexes.mipsfc YMR300C -1 YAL003W 1 YAL010C -1,Usage of Gist,$compute-weights -train sa

    5、mple.mtx -class sample.labels sample.weights $classify -train sample.mtx -learned sample.weights -test test.mtx test.predict $score-svm-results -test test.labels test.predict sample.weights,Test.predict,# Generated by classify # Gist, version 2.0 .gene classification discriminant YKL197C -1 -3.349 Y

    6、GL022W -1 -4.682 YLR069C -1 -2.799 YJR121W 1 0.7072,Output of score-svm-results,Number of training examples: 1644 (24 positive, 1620 negative) Number of support vectors: 60 (14 positive, 46 negative) 3.65% Training results: FP=0 FN=3 TP=21 TN=1620 Training ROC: 0.99874 Test results: FP=12 FN=1 TP=9

    7、TN=801 Test ROC: 0.99397,Parameters,compute-weights -power -radial -widthfactor -posconstraint -negconstraint ,Rules of thumb,Radial basis kernel usually performs better. Scale your data. scale each attribute to 0,1 or -1,+1 to avoid over-fitting. Try different penalty parameters C for two classes i

    8、n case of unbalanced data.,LIBSVM,http:/www.csie.ntu.edu.tw/cjlin/libsvm/ Developed by Chih-Jen Lin etc. Tools for (multi-class) SV classification and regression. C+/Java/Python/Matlab/Perl Linux/UNIX/Windows SMO implementation, fast!,Data files for LIBSVM,Training.dat +1 1:0.708333 2:1 3:1 4:-0.320

    9、755 -1 1:0.583333 2:-1 4:-0.603774 5:1 +1 1:0.166667 2:1 3:-0.333333 4:-0.433962 -1 1:0.458333 2:1 3:1 4:-0.358491 5:0.374429 Testing.dat,Usage of LIBSVM,$svm-train -c 10 -w1 1 -w-1 5 Train.dat My.model - train classifier with penalty 10 for class 1 and penalty 50 for class 1, RBK $svm-predict Test.

    10、dat My.model My.out $svm-scale Train_Test.dat Scaled.dat,Output of LIBSVM,Svm-train optimization finished, #iter = 219 nu = 0.431030 obj = -100.877286, rho = 0.424632 nSV = 132, nBSV = 107 Total nSV = 132,Output of LIBSVM,Svm-predict Accuracy = 86.6667% (234/270) (classification) Mean squared error = 0.533333 (regression) Squared correlation coefficient = 0.532639 (regression) Calculate FP, FN, TP, TN from My.out,


    注意事项

    本文(A Practical Guide to SVM.ppt)为本站会员(hopesteam270)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开