欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    A Multi-span Language Modeling Frame Work For Speech .ppt

    • 资源ID:377847       资源大小:158KB        全文页数:19页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    A Multi-span Language Modeling Frame Work For Speech .ppt

    1、A Multi-span Language Modeling Frame Work For Speech Recognition Jimmy Wang Speech Lab, NTU,Outline,1.Introduction. 2.N-gram Language Modeling. 3.Smoothing and Clustering of N-gram Language Model. 4.LSA Modeling. 5.Hybrid LSA+N-gram Language Model. 6.Conclusion.,INTRODUCTION, .劉邦友血案抓到一對象 劉邦友血案抓到一隊象

    2、.水餃一碗多少錢睡覺一晚多少錢,INTRODUCTION,Stochastic Modeling of Speech Recognition :,INTRODUCTION,N-gram language modeling has been the the formalism of choice for ASR because of reliability, but can only constraint locally.For global constraints, parsing and rule-based grammar have been only successful in smal

    3、l vocabulary application.,INTRODUCTION,N-gram+LSA (Latent Semantic Analysis) language models integrate local constraints via N-gram, and global constraints through LSA models.,N-gram Language Model,Assume each word depends only on the previous N-1 words (N words total).N-gram=N-1 order Markov Model.

    4、P(象| 抓到一隊) P(象| 抓到 , 一隊). Perplexity:,N-gram Language Model,N-gram Training From Text Corpus: Corpus Size ranges from hundreds Mbytes to several Gbytes.Maximum Likelihood Approach:P(“the | nothing but”) C(“nothing but the”) / C(“nothing but”).,Smoothing and Clustering,Terrible on test data: If no oc

    5、currences of C(xyz), probability is 0.Find 01 by optimizing on “held-out” data.,Smoothing and Clustering,CLUSTERING = Classes of (same things).P(Tuesday | party on) or P(Tuesday | celebration on)= P(WEEKDAY|EVENT)Put words in clusters: P(WEEKDAY|EVENT) WEEKDAY = Sunday, Monday, Tuesday,EVENT=party,

    6、celebration, birthday.Clustering may lead to good result for verylittle training data.,Smoothing and Clustering,Word Clustering Methods:1.Build them by hand.2.Part of Speech (POS) tags.3.Automatic Clustering:Swap words betweenclusters to minimize perplexity. Automatic Clustering: 1.top-down splittin

    7、g(Decision Tree): Fast. 2.bottom-up merging: Accurate .,LSA MODELING,Word Co-Occurrence Matrix: WV=vocabulary of size M. M=4000080000T=training corpus of N documents.N=80000100000Ci,j=Number of words Wi in document Dj.Nj=Total number of words in Dj. Ei=normalized entropy of Wi in the corpus T.,LSA M

    8、ODELING,Vector Representation:SVD (Singular Value Decomposition) of W:U is MxR of vectors ui, represents words,S is RxR diagonal matrix of singular values, V is NxR of vectors vj, represents documents. Experiment on different values led to that R=100300 seemed to be adequate balanced.,LSA MODELING,L

    9、anguage Modeling:Hq-1:overall history of current document Word-Clustered LSA model:This clustering takes the global context andhence more semantic information.,LSA+N-gram Language Model,Integration with N-grams:Maximum Entropy Estimation:Hq-1:overall history of n-gram componentand LSA component .,LS

    10、A+N-gram Language Model,Context Scope Selection:In real case, the prior probability would change over time.So we need to define the current document history or limit the size of history considered. Exponential Forgetting:0 =1,LSA+N-gram Language Model,Initialization of V0 : In the beginning, we may

    11、present the pseudo-document V0 as: 1.Zero vector. 2.Centroid vector of all training documents. 3.If the domain is known, then we start at the centroid of specific region in the LSA space.,CONCLUSION,Hybrid N-gram+LSA model performs much better than traditional N-gram in perplexity(25%) and WER(14%).

    12、 LSA performs better in the within-domain testing data, and not so good for cross-domain testing. Discounting obsolete data using exponential forgetting can be better when the topics change incrementally.,CONCLUSION,LSA modeling is much more sensitive to “content words” than “function words”, which is a complement for N-gram modeling Provided suitable domain adaptation framework, the hybrid LSA+N-gram model should improve the perplexity and recognition rate further more.,


    注意事项

    本文(A Multi-span Language Modeling Frame Work For Speech .ppt)为本站会员(boatfragile160)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开