欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    第三章 证明(三).ppt

    • 资源ID:376971       资源大小:594KB        全文页数:13页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第三章 证明(三).ppt

    1、第三章 证明(三),平行四边形的性质,等腰梯形的性质与判定,平行四边形的性质,你还记得我们探索过的平行四边形的性质及判别条件吗?,平行四边形的性质,定理:平行四边形的对边相等.,已知:如图,四边形ABCD是平行四边形.,求证:AB=CD,BC=DA.,分析:要证明AB=CD,BC=DA可转化全等三角形的对应边来证明,于是可作辅助线来达到目的.,证明:连接AC.,四边形ABCD是平行四边形,ABCD,BCDA.,1=2, 3=4.,AC=CA,ABCCDA(ASA).,AB=CD,BC=DA.,平行四边形的性质,定理:平行四边形的对角相等.,已知:如图,四边形ABCD是平行四边形.,求证:BAC

    2、=BCD, B=D.,1=2, 3=4.,证明:,ABCCDA(已证).,B=D.,BAC=BCD.,平行四边形的性质,定理:平行四边形的对角线互相平分.,已知:如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O.,求证:CO=AO,BO=DO.,分析:要证明AO=CO,BO=DO可转化全等三角形的对应边来证明.,证明:,四边形ABCD是平行四边形,BCDA.,1=2, 3=4.,BC=DA,BOCDOA(ASA).,CO=AO,BO=DO.,平行四边形的性质,驶向胜利的彼岸,定理:夹在两条平等线间的平等线段相等.,已知:如图,直线ABCD,线段EFGH,且AB,CD与MN,PQ分别

    3、相交于点E,F,G,H.,求证:EF=GH.,分析:可利用平行四边形边的对边相等来证明.,证明:,EFGH,ABCD.,四边形ABCD是平行四边形.,EF=GH.,等腰梯形的性质,定理:等腰梯形同一底上的两个角相等.,已知:如图,在梯形ABCD中,ADBC,AB=DC.,求证:A=D, B=C.,分析:可将两个角转化为同一三角形的内角,利用等腰三角形等边对等角来证明,于是可过D作AB的平行线.,证明:过点D作DEAB,交BC于点E.,1=B.,四边形ABED是平行四边形.,AB=DE.,AB=DC,DE=DC.,1=C.,ADBC,DEAB,B=C.,A+B=1800, ADC+C=1800.

    4、,A=ADC.,等腰梯形的性质,驶向胜利的彼岸,定理:等腰梯形的两条对角线相等.,已知:如图,在梯形ABCD中,ADBC,AB=DC.,求证:AC=DB.,分析:可转化为利用全等三角形的对应边相等来证明.,证明:,B=C., AB=DC.,BC=CB,ABCDCB(SAS).,AC=DB.,ADBC,等腰梯形的判定,驶向胜利的彼岸,定理:同一底上的两个角相等的梯形是等腰梯形.,已知:如图,在梯形ABCD中,ADBC, B=C.,求证:AB=DC.,分析:可将两个角转化为同一三角形的内角,利用等腰三角形等角对等边来证明,于是可过D作AB的平行线.,证明:过点D作DEAB,交BC于点E.,1=B.

    5、,1=C., DE=DC.,ADBC,DEAB,四边形ABED是平行四边形。,AB=DE.,B=C.,AB=DC.,等腰梯形的判定,驶向胜利的彼岸,定理:两条对角线相等的梯形是等腰梯形.,已知:如图,在梯形ABCD中,ADBC,AC=DB.,求证:AB=DC.,分析:设法将两条相等的线段转化在同一三角形中,利用全等三角形的对应边相等来证明.于是可过点D作AC的平行线.,证明:过D作DEAC,交BC的延长线于点E.,DE=AC,1=E.,AC=DB,DB=DE.,2=E.,1=2.,ADBC, DEAC,ABCDCB(SAS).,AB=DC.,BC=CB,平行四边形的性质,定理:平行四边形的对边

    6、相等.,驶向胜利的彼岸,证明后的结论,以后可以直接运用.,四边形ABCD是平行四边形. AB=CD,BC=DA.,定理:平行四边形的对角相等.,四边形ABCD是平行四边形. A=C, B=D.,定理:平行四边形的对角线互相平分.,四边形ABCD是平行四边形. CO=AO,BO=DO.,定理:夹在两条平等线间的平等线段相等.,MNPQ,ABCD, AB=CD.,等腰梯形的性质,定理:等腰梯形同一底上的两个角相等.,定理:等腰梯形的两条对角线相等.,在梯形ABCD中,ADBC, AB=DC, AC=DB,在梯形ABCD中,ADBC, AB=DC, A=D, B=C.,证明后的结论,以后可以直接运用.,等腰梯形的判定,定理:同一底上的两个角相等的梯形是等腰梯形.,在梯形ABCD中,ADBC, A=D或B=C, AB=DC.,定理:两条对角线相等的梯形是等腰梯形.,在梯形ABCD中,ADBC, AC=DB. AB=DC.,证明后的结论,以后可以直接运用.,


    注意事项

    本文(第三章 证明(三).ppt)为本站会员(eventdump275)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开