欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Introduction to Sampling based inference and MCMC.ppt

    • 资源ID:376712       资源大小:787KB        全文页数:23页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Introduction to Sampling based inference and MCMC.ppt

    1、Introduction to Sampling based inference and MCMC,Ata Kaban School of Computer Science The University of Birmingham,The problem,Up till now we were trying to solve search problems (search for optima of functions, search for NN structures, search for solution to various problems) Today we try to:- Co

    2、mpute volumes Averages, expectations, integrals Simulate a sample from a distribution of given shape Some analogies with EA in that we work with samples or populations,The Monte Carlo principle,p(x): a target density defined over a high-dimensional space (e.g. the space of all possible configuration

    3、s of a system under study) The idea of Monte Carlo techniques is to draw a set of (iid) samples x1,xN from p in order to approximate p with the empirical distributionUsing these samples we can approximate integrals I(f) (or v large sums) with tractable sums that converge (as the number of samples gr

    4、ows) to I(f),Importance sampling,Target density p(x) known up to a constant Task: compute Idea: Introduce an arbitrary proposal density that includes the support of p. Then:Sample from q instead of p Weight the samples according to their importance It also implies that p(x) is approximated byEfficie

    5、ncy depends on a good choice of q.,Sequential Monte Carlo,Sequential: Real time processing Dealing with non-stationarity Not having to store the data Goal: estimate the distrib of hidden trajectories We observe yt at each time t We have a model: Initial distribution: Dynamic model: Measurement model

    6、:,Can define a proposal distribution:Then the importance weights are:Obs. Simplifying choice for proposal distribution: Then:,fitness,proposed,weighted,re-sampled,proposed,-,weighted,Applications,Computer vision Object tracking demo Blake&Isard Speech & audio enhancement Web statistics estimation Re

    7、gression & classification Global maximization of MLPs Freitas et al Bayesian networks Details in Gilks et al book (in the School library) Genetics & molecular biology Robotics, etc.,M Isard & A Blake: CONDENSATION conditional density propagation for visual tracking. J of Computer Vision, 1998,Refere

    8、nces & resources,1 M Isard & A Blake: CONDENSATION conditional density propagation for visual tracking. J of Computer Vision, 1998Associated demos & further papers: http:/www.robots.ox.ac.uk/misard/condensation.html 2 C Andrieu, N de Freitas, A Doucet, M Jordan: An Introduction to MCMC for machine l

    9、earning. Machine Learning, vol. 50, pp. 5-43, Jan. - Feb. 2003. Nando de Freitas MCMC papers & sw http:/www.cs.ubc.ca/nando/software.html 3 MCMC preprint service http:/www.statslab.cam.ac.uk/mcmc/pages/links.html 4 W.R. Gilks, S. Richardson & D.J. Spiegelhalter: Markov Chain Monte Carlo in Practice.

    10、 Chapman & Hall, 1996,The Markov Chain Monte Carlo (MCMC) idea,Design a Markov Chain on finite state spacesuch that when simulating a trajectory of states from it, it will explore the state space spending more time in the most important regions (i.e. where p(x) is large),Stationary distribution of a

    11、 MC,Supposing you browse this for infinitely long time, what is the probability to be at page xi. No matter where you started off.=PageRank (Google),Google vs. MCMC,Google is given T and finds p(x) MCMC is given p(x) and finds T But it also needs a proposal (transition) probability distribution to b

    12、e specified. Q: Do all MCs have a stationary distribution? A: No.,Conditions for existence of a unique stationary distribution,Irreducibility The transition graph is connected (any state can be reached) Aperiodicity State trajectories drawn from the transition dont get trapped into cycles MCMC sampl

    13、ers are irreducible and aperiodic MCs that converge to the target distribution These 2 conditions are not easy to impose directly,Reversibility,Reversibility (also called detailed balance) is a sufficient (but not necessary) condition for p(x) to be the stationary distribution.It is easier to work w

    14、ith this condition.,MCMC algorithms,Metropolis-Hastings algorithm Metropolis algorithm Mixtures and blocks Gibbs sampling other Sequential Monte Carlo & Particle Filters,The Metropolis-Hastings and the Metropolis algorithm as a special case,Obs. The target distrib p(x) in only needed up to normalisa

    15、tion.,Examples of M-H simulations with q a Gaussian with variance sigma,Variations on M-H: Using mixtures and blocks,Mixtures (eg. of global & local distributions) MC1 with T1 and having p(x) as stationary p MC2 with T2 also having p(x) as stationary p New MCs can be obtained: T1*T2, or a*T1 + (1-a)

    16、*T2, which also have p(x) Blocks Split the multivariate state vector into blocks or components, that can be updated separately Tradeoff: small blocks slow exploration of target p large blocks low accept rate,Gibbs sampling,Component-wise proposal q:Where the notation means:Homework: Show that in thi

    17、s case, the acceptance probability is =1 see 2, pp.21,Gibbs sampling algorithm,More advanced sampling techniques,Auxiliary variable samplers Hybrid Monte Carlo Uses the gradient of p Tries to avoid random walk behavior, i.e. to speed up convergence Reversible jump MCMC For comparing models of different dimensionalities (in model selection problems) Adaptive MCMC Trying to automate the choice of q,


    注意事项

    本文(Introduction to Sampling based inference and MCMC.ppt)为本站会员(吴艺期)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开