欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Introduction to R- Lesson 2 - Manipulating Data.ppt

    • 资源ID:376710       资源大小:304KB        全文页数:48页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Introduction to R- Lesson 2 - Manipulating Data.ppt

    1、Introduction to R: Lesson 2 - Manipulating Data,Andrew Jaffe 9/13/10,Reminder,Here is the course website: http:/www.biostat.jhsph.edu/ajaffe/rseminar.html There is a running collection of functions that we have covered in class,Dataset,For the remaining sessions, were going to learn R by using data

    2、from the Baltimore Dog Study Data collection is ongoing, and dataset will be updated weekly,http:/ Data Examining Data Recoding Variables Exporting Data,Importing Data,Here is a link to the data: http:/www.biostat.jhsph.edu/ajaffe/files/lecture_2_data.csv So how do we get it into R? Two options! Bot

    3、h involve read.table(),Importing Data,read.table(filename, header = F, sep = “, as.is = !stringsAsFactors, ) In functions, “ means additional parameters can be passed/used These are some of the options associated with this functions all can be seen typing ?read.table in the console,Importing Data,fi

    4、lename: the path to your file, in quotes If no path is specified (ie “C:Docsdata.txt“ or “UsersAndrewdata.txt“), then R will look in your working directory for the file (ie “data.txt“) For PCs, you need double backslashes to designate paths (ie “C:Docsdata.txt“) Basically, a single backslash is the

    5、escape character,Importing Data,filename - you can: Write out the full file path using quotes and the correct syntax Manually set your working directory to where your script and files are located setwd() Or, if your script and files are in the same place, use Notepad+. It sets the scripts location t

    6、o be the working directory,Importing Data,header default is false Does the first row of your file contain column names? If so, include header = T in your read.table() call,Importing Data,sep = “ what character separates columns? The escape character followed by the delimiter is used here: Tab: “t“ N

    7、ewline/Enter/Return: “n“ Ampersand: “&“, etc,Importing Data,CSV is an exception A special case of read.table() exists: read.csv(), which takes all of the same parameters, except defaults sep = “,“ Analogously, read.delim() defaults sep = “t“,Importing data,as.is = F (as stringsAsFactors=T) : should

    8、character strings be treated as factors? I prefer character strings as characters (ie as.is = T) and not factors Easier to manipulate, search, and match You can always change to factors later,Importing Data,Lets open up a new script: Notepad+ : File New Mac: File New Document Save it somewhere you c

    9、an find later Write a header (using #) If Mac, use setwd() and include the folder you put the script,Importing Data,Lets get our data R Option 1: remember scan from last session? file = “http:/www.biostat.jhsph.edu/ajaffe/files/lecture_2_data.csv“,Importing Data,Option 2: Right click on the link to

    10、the data on the webpage, and save it as a csv file in the same folder as your script file = “lecture_2_data.csv“,Importing Data,Either way: dat - read.csv(file, header = T, as.is=T),Overview,Importing Data Examining Data Recoding Variables Exporting Data,Examining Data,What are the dimensions of the

    11、 dataset?,Examining Data,What are the dimensions of the dataset? dim(dat) 1 1000 7,Rows,Columns,Examining Data,What variables are included? What are their names?,Examining Data,What variables are included? What are their names?, head(dat)id age sex height weight dog dog_type 1 1 40 F 63.5 134.5 no 2

    12、 2 36 M 65.6 191.6 no 3 3 69 M 68.2 170.0 no 4 4 56 F 62.9 134.5 no 5 5 66 F 63.7 133.4 no 6 6 84 M 70.8 200.6 no ,Examining Data,What variables are included? What are their names?, names(dat) 1 “id“ “age“ “sex“ “height“ 5 “weight“ “dog“ “dog_type“,Examining Data,What class of data is id? dog_type?,

    13、Examining Data,What class of data is id? dog_type?, class(dat$id) 1 “integer“ class(dat$dog_type) 1 “character“,Examining Data,What class of data is id? dog_type?, str(dat) data.frame: 1000 obs. of 7 variables:$ id : int 1 2 3 4 5 6 7 8 9 10 .$ age : int 40 36 69 56 66 84 40 73 76 38 .$ sex : chr “F

    14、“ “M“ “M“ “F“ .$ height : num 63.5 65.6 68.2 62.9 63.7 70.8 67 67 62.6 62.2 .$ weight : num 134 192 170 134 133 .$ dog : chr “no“ “no“ “no“ “no“ .$ dog_type: chr NA NA NA NA .,Examining Data,How many total participants are there? How many men and how many women?,Examining Data,How many total partici

    15、pants are there? How many men and how many women?, length(unique(dat$id) 1 1000 unique(c(1,1,2,2,3) 1 1 2 3 length(unique(c(1,1,2,2,3) 1 3 length(c(1,1,2,2,3) 1 5,Examining Data,How many total participants are there? How many men and how many women?, table(dat$sex)F M 493 507,Examining Data,How many

    16、 people have dogs?,Examining Data,How many people have dogs?, table(dat$dog)no yes 518 482,Examining Data,How many different types of dogs are there? How many of each?,Examining Data,How many different types of dogs are there? How many of each?, table(dat$dog_type)husky lab poodle retriever 113 125

    17、111 133,Overview,Importing Data Examining Data Recoding Variables Exporting Data,Recoding Data,Missingness: represented by NA default read.table(,na.strings = “NA“,) you can change based on your data NA is NOT a character string:, x = rep(NA,3) x 1 NA NA NA class(x) 1 “logical“,Recoding Data,NA valu

    18、es are essentially ignored, except when you use certain functions, x = c(NA, 1, NA, 3, 4) x*2 1 NA 2 NA 6 8 mean(x) 1 NA mean(x, na.rm = TRUE) 1 2.666667,Recoding Data,is.na() tests for missing entries Returns TRUE or FALSE at each entry, x = c(NA, 1, NA, 3, 4) x 1 NA 1 NA 3 4 class(x) 1 “numeric“ i

    19、s.na(x) 1 TRUE FALSE TRUE FALSE FALSE,Recoding Data,which() returns the indices for entries that are TRUE, which(is.na(x) 1 1 3,Recoding Data,! means not:, which(!is.na(x) 1 2 4 5 x 1 NA 1 NA 3 4 Index = which(!is.na(x) xIndex 1 1 3 4,Recoding Data,which is implicit when you subset using is.na (or !

    20、is.na),# in one step x!is.na(x) 1 1 3 4,Recoding Data,Renaming binary variables ex: change sex from M/F to 0/1, head(dat$sex) 1 “F“ “M“ “M“ “F“ “F“ “M“ bin.sex = ifelse(dat$sex=“F“,1,0) head(bin.sex) 1 1 0 0 1 1 0,Recoding Data,?ifelse: ifelse(test, yes, no) test - an object which can be coerced to

    21、logical mode (ie TRUE or FALSE) yes - return values for true elements of test no - return values for false elements of test,Recoding Data,Logical characters: =, !=, , = Also: is.type ie: is.na, is.character, is.data.frame, is.numeric, etc, x = c(1,3,7,9) x 3 1 FALSE FALSE TRUE TRUE x = 3 1 FALSE TRU

    22、E FALSE FALSE,Recoding Data, bin.sex = ifelse(dat$sex=“F“,1,0) head(dat$sex = “F“) 1 TRUE FALSE FALSE TRUE TRUE FALSE head(bin.sex) 1 1 0 0 1 1 0,Recoding Data,Analogously, creating a cut-point in continuous data:, head(dat$age) 1 40 36 69 56 66 84 bin.age = ifelse(dat$age head(bin.age) 1 0 0 1 1 1

    23、1,Overview,Importing Data Examining Data Recoding Variables Exporting Data,Exporting Data,write.table(data, filename, quote = T, row.names = T, col.names = T, sep = “ “) data is an R object ie dat in our case filename is similar to read.table you should include a .txt in the filename quote puts char

    24、acter strings in quotes (I like setting that to be FALSE or F),Exporting Data,row.names: includes the row.names in the output, which is usually just a sequence from 1 to nrow(dat) I prefer FALSE, as excel automatically has row indices col.names: include the header names in the output file? Depending on the data, I usually use TRUE,Practice,Make a 2 x 2 table of sex and dog Create a BMI variable using height and weight Hint: BMI = weightlbs*703/(heightin)2 Create an overweight variable, which gives the value 1 for people with BMI 30 and 0 otherwise,


    注意事项

    本文(Introduction to R- Lesson 2 - Manipulating Data.ppt)为本站会员(吴艺期)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开