欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Introduction to Quantum Information ProcessingCS 467 - CS .ppt

    • 资源ID:376707       资源大小:271.50KB        全文页数:23页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Introduction to Quantum Information ProcessingCS 467 - CS .ppt

    1、1,Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681,Richard Cleve DC 3524 clevecs.uwaterloo.caCourse web site at: http:/www.cs.uwaterloo.ca/cleve/courses/cs467,Lecture 11 (2005),2,Contents,Continuation of density matrix formalismTaxonomy of various

    2、normal matricesBloch sphere for qubitsGeneral quantum operations,3,Continuation of density matrix formalismTaxonomy of various normal matricesBloch sphere for qubitsGeneral quantum operations,4,Recap: density matrices (I),The density matrix of the mixed state (1, p1), (2, p2), ,(d, pd) is:,1. & 2. 0

    3、 + 1 and 0 1 both have,Examples (from previous lecture):,5,Recap: density matrices (II),7. The first qubit of 01 10,Examples (continued):,has:,.? (later),6,Recap: density matrices (III),Applying U to yields U U,Measuring state with respect to the basis 1, 2,., d,yields: k th outcome with probability

    4、 k kand causes the state to collapse to k k,Quantum operations in terms of density matrices:,Since these are expressible in terms of density matrices alone (independent of any specific probabilistic mixtures), states with identical density matrices are operationally indistinguishable,7,Characterizin

    5、g density matrices,Three properties of :Tr = 1 (Tr M = M11 + M22 + . + Mdd ) = (i.e. is Hermitian) 0, for all states ,Moreover, for any matrix satisfying the above properties, there exists a probabilistic mixture whose density matrix is ,Exercise: show this,8,Continuation of density matrix formalism

    6、Taxonomy of various normal matricesBloch sphere for qubitsGeneral quantum operations,9,Normal matrices,Definition: A matrix M is normal if MM = MM,Theorem: M is normal iff there exists a unitary U such that M = UDU, where D is diagonal (i.e. unitarily diagonalizable),Examples of abnormal matrices:,i

    7、s not even diagonalizable,is diagonalizable, but not unitarily,10,Unitary and Hermitian matrices,with respect to some orthonormal basis,Normal:,Unitary: MM = I which implies |k |2 = 1, for all k,Hermitian: M = M which implies k R, for all k,Question: which matrices are both unitary and Hermitian?,An

    8、swer: reflections (k +1,1, for all k),11,Positive semidefinite,Positive semidefinite: Hermitian and k 0, for all k,Theorem: M is positive semidefinite iff M is Hermitian and, for all , M 0,(Positive definite: k 0, for all k),12,Projectors and density matrices,Projector: Hermitian and M 2 = M, which

    9、implies that M is positive semidefinite and k 0,1, for all k,Density matrix: positive semidefinite and Tr M = 1, so,Question: which matrices are both projectors and density matrices?,Answer: rank-one projectors (k = 1 if k = k0 and k = 0 if k k0 ),13,Taxonomy of normal matrices,14,Continuation of de

    10、nsity matrix formalismTaxonomy of various normal matricesBloch sphere for qubitsGeneral quantum operations,15,Bloch sphere for qubits (I),Consider the set of all 2x2 density matrices ,Note that the coefficient of I is , since X, Y, Z have trace zero,They have a nice representation in terms of the Pa

    11、uli matrices:,Note that these matricescombined with Iform a basis for the vector space of all 2x2 matrices,We will express density matrices in this basis,16,Bloch sphere for qubits (II),We will express,First consider the case of pure states , where, without loss of generality, = cos()0 + e2isin()1 (

    12、, R),Therefore cz = cos(2), cx = cos(2)sin(2), cy = sin(2)sin(2),These are polar coordinates of a unit vector (cx , cy , cz) R3,17,Bloch sphere for qubits (III),Pure states are on the surface, and mixed states are inside (being weighted averages of pure states),Note that orthogonal corresponds to an

    13、tipodal here,18,Continuation of density matrix formalismTaxonomy of various normal matricesBloch sphere for qubitsGeneral quantum operations,19,General quantum operations (I),Example 1 (unitary op): applying U to yields U U,General quantum operations (a.k.a. “completely positive trace preserving map

    14、s”, “admissible operations” ): Let A1, A2 , , Am be matrices satisfying,20,General quantum operations (II),Example 2 (decoherence): let A0 = 00 and A1 = 11,This quantum op maps to 0000 + 1111,Corresponds to measuring “without looking at the outcome”,For = 0 + 1,21,General quantum operations (III),Ex

    15、ample 3 (trine state “measurent”):,Let 0 = 0, 1 = 1/20 + 3/21, 2 = 1/20 3/21,Then,The probability that state k results in “outcome” Ak is 2/3, and this can be adapted to actually yield the value of k with this success probability,Define A0 = 2/300A1= 2/311 A2= 2/322,22,General quantum operations (IV),Example 4 (discarding the second of two qubits): Let A0 = I0 and A1 = I1,State becomes ,State becomes,Note 1: its the same density matrix as for (0, ), (1, ),Note 2: the operation is the partial trace Tr2 ,23,THE END,


    注意事项

    本文(Introduction to Quantum Information ProcessingCS 467 - CS .ppt)为本站会员(孙刚)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开