欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Introduction to Applied Spatial Econometrics.ppt

    • 资源ID:376629       资源大小:695.50KB        全文页数:42页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Introduction to Applied Spatial Econometrics.ppt

    1、Introduction to Applied Spatial Econometrics,Attila VargaDIMETIC Pcs, July 3, 2009,Prerequisites,Basic statistics (statistical testing) Basic econometrics (Ordinary Least Squares and Maximum Likelihood estimations, autocorrelation),EU Patent applications 2002,Outline,Introduction The nature of spati

    2、al data Modelling space Exploratory spatial data analysis Spatial Econometrics: the Spatial Lag and Spatial Error models Specification diagnostics New developments in Spatial Econometrics Software options,Spatial Econometrics,A collection of techniques that deal with the peculiarities caused by spac

    3、e in the statistical analysis of regional science models” Luc Anselin (1988),Increasing attention towards Spatial Econometrics in Economics,Growing interest in agglomeration economies/spillovers (Geographical Economics)Diffusion of GIS technology and increased availability of geo-coded data,The natu

    4、re of spatial data,Data representation: time series (time line”) vs. spatial data (map)Spatial effects: spatial heterogeneityspatial dependence,Spatial heterogeneity,Structural instability in the forms of: Non-constant error variances (spatial heteroscedasticity) Non-constant coefficients (variable

    5、coefficients, spatial regimes),Spatial dependence (spatial autocorrelation/spatial association),In spatial datasets dependence is present in all directions and becomes weaker as data locations become more and more dispersed” (Cressie, 1993)Toblers First Law of Geography: Everything is related to eve

    6、rything else, but near things are more related than distant things.” (Tobler, 1979),Spatial dependence (spatial autocorrelation/spatial association),Positive spatial autocorrelation: high or low values of a variable cluster in spaceNegative spatial autocorrelation: locations are surrounded by neighb

    7、ors with very dissimilar values of the same variable,EU Patent applications 2002,Spatial dependence (spatial autocorrelation/spatial association),Dependence in time and dependence in space: Time: one-directional between two observations Space: two-directional among several observations,Spatial depen

    8、dence (spatial autocorrelation/spatial association),Two main reasons:Measurement error (data aggregation) Spatial interaction between spatial units,Modelling space,Spatial heterogeneity: conventional non-spatial models (random coefficients, error compontent models etc.) are suitableSpatial dependenc

    9、e: need for a non-convential approach,Modelling space,Spatial dependence modelling requires an appropriate representation of spatial arrangementSolution: relative spatial positions are represented by spatial weights matrices (W),Modelling space,1. Binary contiguity weights matrices- spatial units as

    10、 neighbors in different orders (first, second etc. neighborhood classes)- neighbors:- having a common border,or- being situated within a given distance band2. Inverse distance weights matrices,Modelling space,Binary contiguity matrices (rook, queen)wi,j = 1 if i and j are neighbors, 0 otherwise Neig

    11、hborhood classes (first, second, etc),Modelling space,Inverse distance weights matrices,Modelling space,Row-standardization:Row-standardized spatial weights matrices:- easier interpretation of results (averageing of values)- ML estimation (computation),Modelling space,The spatial lag operator: Wy is

    12、 a spatially lagged value of the variable y In case of a row-standardized W, Wy is the average value of the variable: in the neighborhood (contiguity weights) in the whole sample with the weight decreasing with increasing distance (inverse distance weights),Exploratory spatial data analysis,Measurin

    13、g global spatial association: The Morans I statistic:a) I = N/S0 Si,j wij (xi -m)(xj - m) / Si(xi -m)2normalizing factor: S0 =Si,j wij(w is not row standardized)b) I* = Si,j wij (xi -m)(xj - m) / Si(xi -m)2(w is row standardized),Global spatial association,Basic principle behind all global measures:

    14、- The Gamma indexG = Si,j wij cij Neighborhood patterns and value similarity patterns compared,Global spatial association,Significance of global clustering: test statistic compared with values under H0 of no spatial autocorrelation- normality assumption- permutation approach,Local indicatiors of spa

    15、tial association (LISA),The Moran scatterplotidea: Morans I is a regression coefficient of a regression of Wz on z when w is row standardized:I=zWz/zz (where z is the variable in deviations from the mean)- regression line: general pattern- points on the scatterplot: local tendencies- outliers: extre

    16、me to the central tendency (2 sigma rule)- leverage points: large influence on the central tendency (2 sigma rule),Moran scatterplot,Local indicators of spatial association (LISA),B. The Local Moran statisticIi = ziSjwijzjsignificance tests: randomization approach,Spatial Econometrics,The spatial la

    17、g modelThe spatial error model,The spatial lag model,Lagged values in time: yt-kLagged values in space: problem (multi-oriented, two directional dependence) Serious loss of degrees of freedomSolution: the spatial lag operator, Wy,The spatial lag model,The spatial lag model,EstimationProblem: endogen

    18、eity of wy (correlated with the error term) OLS is biased and inconsistent Maximum Likelihood (ML) Instrumental Variables (IV) estimation,The spatial lag model,ML estimation: The Log-Likelihood function,The Spatial Lag model,IV estimation (2SLS) Suggested instruments: spatially lagged exogenous vari

    19、ables,The Spatial Error model,The Spatial Error model,OLS: unbiased but inefficientML estimation,Specification tests,Steps in estimation,Estimate OLS Study the LM Error and LM Lag statistics with ideally more than one spatial weights matrices The most significant statistic guides you to the right mo

    20、del Run the right model (S-Err or S-Lag),Example: Varga (1998),Spatial econometrics: New developments,Estimation: GMM Spatial panel models Spatial Probit, Logit, Tobit,Study materials,Introductory: Anselin: Spacestat tutorial (included in the course material) Anselin: Geoda users guide (included in the course material)Advanced: Anselin: Spatial Econometrics, Kluwer 1988,Software options,GEODA easiest to access and use SpaceStat R Matlab routines,


    注意事项

    本文(Introduction to Applied Spatial Econometrics.ppt)为本站会员(inwarn120)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开