欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Integration of Representation Into Goal-Driven Behavior-.ppt

    • 资源ID:376464       资源大小:436KB        全文页数:20页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Integration of Representation Into Goal-Driven Behavior-.ppt

    1、Integration of Representation Into Goal-Driven Behavior-Based Robots,By Dr. Maja J. MataricPresented by Andy Klempau,Introduction,Hybrid system separates reactive low level actions from deliberative decision actions. Alternative to Hybrid approach is Behavior-Based system. Behavior-Based system comb

    2、ines a reactive subsumption foundation with a decision maker. Toto is a Behavior-Based robot that explores dynamic office environments, identifies landmarks, maps the landmarks, and uses the map for path planning.,Outline,Totos Structure Basic Navigation ( Exploring ) Landmark Detection Mapping Land

    3、marks Path Planning,Totos Structure,Cylindrical Robot12 Sonar Sensors4 Bit Compass (16 states),Basic Navigation,Subsumption Architecture Highest priority is Stroll behavior Lowest priority is Correct behavior,Basic Navigation,Stroll : if( min( sonars 1 2 3 4 ) = danger-zone ) if( not stopped ) stop

    4、else move backward else move forward,Basic Navigation,Avoid : if( ( sonar 3 or 4 ) = safe-zone ) turn left else if( ( sonar 1 or 2 ) = safe-zone ) turn right,Basic Navigation,Align : if( ( sonar 7 or 8 ) edging-distance ) turn right if( ( sonar 9 or 10 ) edging-distance ) turn left,Basic Navigation,

    5、Correct : if( sonar 11 edging-distance ) turn left if( sonar 6 edging-distance ) turn right,Landmark Detection,4 types of landmarks: Right wall (RW); consistent right wall and consistent direction. Left wall (LW); consistent left wall and consistent direction. Corridor (C); consistent left and right

    6、 walls and consistent direction. Irregular (I); inconsistent walls and inconsistent direction.How does Toto identify landmarks?,Confidence Counter!,Landmark Detection,After a time interval, sonar and compass readings are taken. Confidence Counter increments when sonar and compass readings are the sa

    7、me as last time interval. Predetermined threshold identifies how many time intervals are needed to justify a landmark,Landmark Detection,Mapping Landmarks,After discovered, landmarks are stored in Totos internal map. Landmark nodes store information discovered through sensors and compass (see next s

    8、lide). Nodes communicate with neighbors.,Mapping Landmarks,Landmark node has a set whereT is LW, RW, C, I ; qualitative landmark type.C is 0 15 ; averaged compass bearing.L is 1 127 ; rough estimate of landmarks length.P = ( x, y ) -128 = x, y = 127; coarse position estimate.Length is obtained throu

    9、gh timer (could be confidence counter). Position is obtained through length and compass.,Mapping Landmarks,Example:,Path Planning,Use the map to go to a goal. This is done by activating one of Totos previously visited landmarks as a goal.,Path Planning,Goal sends signal to neighbor nodes. Eventually

    10、, all nodes know where goal is. Greedy algorithm ensures Toto will take shortest path to goal. Toto can go to goal starting from any landmark. Toto can adapt to a changing environment.,Review,ExploresFinds landmarksStores landmarks in mapGoes to goal,Conclusion,Toto explores, maps, plans, and finds

    11、goals without Deliberative or Hybrid process. Toto “extends the repertoire of integrated reactive systems to tasks requiring spatial modeling and user interaction.” Toto can adapt to a dynamic environment.,Discussion,Is linear-time path planning reactive? Can a Behavior-Based system do anything a hybrid system can do? How is the open-space behavior triggered?,


    注意事项

    本文(Integration of Representation Into Goal-Driven Behavior-.ppt)为本站会员(ownview251)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开