欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Epipolar Geometryclass 11.ppt

    • 资源ID:374475       资源大小:1.71MB        全文页数:33页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Epipolar Geometryclass 11.ppt

    1、Epipolar Geometry class 11,Multiple View Geometry Comp 290-089 Marc Pollefeys,Content,Background: Projective geometry (2D, 3D), Parameter estimation, Algorithm evaluation. Single View: Camera model, Calibration, Single View Geometry. Two Views: Epipolar Geometry, 3D reconstruction, Computing F, Comp

    2、uting structure, Plane and homographies. Three Views: Trifocal Tensor, Computing T. More Views: N-Linearities, Multiple view reconstruction, Bundle adjustment, auto-calibration, Dynamic SfM, Cheirality, Duality,Multiple View Geometry course schedule (subject to change),More Single-View Geometry,Proj

    3、ective cameras and planes, lines, conics and quadrics.Camera calibration and vanishing points, calibrating conic and the IAC,Two-view geometry,Epipolar geometry3D reconstructionF-matrix comp.Structure comp.,Correspondence geometry: Given an image point x in the first view, how does this constrain th

    4、e position of the corresponding point x in the second image?,(ii) Camera geometry (motion): Given a set of corresponding image points xi xi, i=1,n, what are the cameras P and P for the two views?,(iii) Scene geometry (structure): Given corresponding image points xi xi and cameras P, P, what is the p

    5、osition of (their pre-image) X in space?,Three questions:,The epipolar geometry,C,C,x,x and X are coplanar,The epipolar geometry,What if only C,C,x are known?,The epipolar geometry,All points on p project on l and l,The epipolar geometry,Family of planes p and lines l and l Intersection in e and e,T

    6、he epipolar geometry,epipoles e,e = intersection of baseline with image plane = projection of projection center in other image = vanishing point of camera motion direction,an epipolar plane = plane containing baseline (1-D family),an epipolar line = intersection of epipolar plane with image(always c

    7、ome in corresponding pairs),Example: converging cameras,Example: motion parallel with image plane,Example: forward motion,e,e,The fundamental matrix F,algebraic representation of epipolar geometry,we will see that mapping is (singular) correlation (i.e. projective mapping from points to lines) repre

    8、sented by the fundamental matrix F,The fundamental matrix F,geometric derivation,mapping from 2-D to 1-D family (rank 2),The fundamental matrix F,algebraic derivation,(note: doesnt work for C=C F=0),The fundamental matrix F,correspondence condition,The fundamental matrix satisfies the condition that

    9、 for any pair of corresponding points xx in the two images,The fundamental matrix F,F is the unique 3x3 rank 2 matrix that satisfies xTFx=0 for all xx,Transpose: if F is fundamental matrix for (P,P), then FT is fundamental matrix for (P,P) Epipolar lines: l=Fx & l=FTx Epipoles: on all epipolar lines

    10、, thus eTFx=0, x eTF=0, similarly Fe=0 F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2) F is a correlation, projective mapping from a point x to a line l=Fx (not a proper correlation, i.e. not invertible),The epipolar line geometry,l,l epipolar lines, k line not through e l=Fkxl and symmetrically l

    11、=FTkxl,(pick k=e, since eTe0),Fundamental matrix for pure translation,Fundamental matrix for pure translation,Fundamental matrix for pure translation,example:,motion starts at x and moves towards e, faster depending on Z,pure translation: F only 2 d.o.f., xTexx=0 auto-epipolar,General motion,Geometr

    12、ic representation of F,Fs: Steiner conic, 5 d.o.f. Fa=xax: pole of line ee w.r.t. Fs, 2 d.o.f.,Geometric representation of F,Pure planar motion,Steiner conic Fs is degenerate (two lines),Projective transformation and invariance,Derivation based purely on projective concepts,F invariant to transforma

    13、tions of projective 3-space,unique,not unique,canonical form,Projective ambiguity of cameras given F,previous slide: at least projective ambiguity this slide: not more!,lemma:,(22-15=7, ok),Canonical cameras given F,F matrix corresponds to P,P iff PTFP is skew-symmetric,Possible choice:,Canonical re

    14、presentation:,The essential matrix,fundamental matrix for calibrated cameras (remove K),5 d.o.f. (3 for R; 2 for t up to scale),E is essential matrix if and only if two singularvalues are equal (and third=0),Four possible reconstructions from E,(only one solution where points is in front of both cameras),Next class: 3D reconstruction,


    注意事项

    本文(Epipolar Geometryclass 11.ppt)为本站会员(fatcommittee260)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开