欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Engineering Analysis ENG 3420 Fall 2009.ppt

    • 资源ID:374432       资源大小:253KB        全文页数:18页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Engineering Analysis ENG 3420 Fall 2009.ppt

    1、Engineering Analysis ENG 3420 Fall 2009,Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00,2,2,Lecture 17,Lecture 17,Reading assignment Chapters 10 and 11, Linear Algebra ClassNotes Last time: Symmetric matrices; Hermitian matrices. Matrix multiplication Today: Linear algebra functio

    2、ns in Matlab The inverse of a matrix Vector products Tensor algebra Characteristic equation, eigenvectors, eigenvalues Norm Matrix condition number Next Time More on LU Factorization Cholesky decomposition,Matrix analysis in MATLAB,Norm Matrix or vector norm normest Estimate the matrix 2-normrank Ma

    3、trix rankdet Determinanttrace Sum of diagonal elementsnull Null spaceorth Orthogonalizationrref Reduced row echelon formsubspace Angle between two subspaces,Eigenvalues and singular values,eig Eigenvalues and eigenvectorssvd Singular value decompositioneigs A few eigenvaluessvds A few singular value

    4、spoly Characteristic polynomialpolyeig Polynomial eigenvalue problemcondeig Condition number for eigenvalueshess Hessenberg formqz QZ factorizationschur Schur decomposition,Matrix functions,Expm Matrix exponential Logm Matrix logarithm Sqrtm Matrix square root Funm Evaluate general matrix function,L

    5、inear systems of equations, and / Linear equation solutioninv Matrix inversecond Condition number for inversioncondest 1-norm condition number estimatechol Cholesky factorizationcholinc Incomplete Cholesky factorizationlinsolve Solve a system of linear equationslu LU factorizationilu Incomplete LU f

    6、actorizationluinc Incomplete LU factorizationqr Orthogonal-triangular decompositionlsqnonneg Nonnegative least-squarespinv Pseudoinverselscov Least squares with known covariance,The inverse of a square,If A is a square matrix, there is another matrix A-1, called the inverse of A, for which AA-1=A-1A

    7、=I The inverse can be computed in a column by column fashion by generating solutions with unit vectors as the right-hand-side constants:,Canonical base of an n-dimensional vector space,100000010000001000.000.100000.010000.001,Matrix Inverse (cont),LU factorization can be used to efficiently evaluate

    8、 a system for multiple right-hand-side vectors - thus, it is ideal for evaluating the multiple unit vectors needed to compute the inverse.,The response of a linear system,The response of a linear system to some stimuli can be found using the matrix inverse.,Distance and norms,Metric space a set wher

    9、e the ”distance” between elements of the set is defined, e.g., the 3-dimensional Euclidean space. The Euclidean metric defines the distance between two points as the length of the straight line connecting them.A norm real-valued function that provides a measure of the size or “length” of an element

    10、of a vector space.,Vector Norms,The p-norm of a vector X is: Important examples of vector p-norms include:,Matrix Norms,Common matrix norms for a matrix A include: Note - max is the largest eigenvalue of ATA.,Matrix Condition Number,The matrix condition number CondA is obtained by calculating CondA=

    11、|A|A-1| In can be shown that: The relative error of the norm of the computed solution can be as large as the relative error of the norm of the coefficients of A multiplied by the condition number. If the coefficients of A are known to t digit precision, the solution X may be valid to only t-log10(Co

    12、ndA) digits.,Built-in functions to compute norms and condition numbers,norm(X,p) Compute the p norm of vector X, where p can be any number, inf, or fro (for the Euclidean norm) norm(A,p) Compute a norm of matrix A, where p can be 1, 2, inf, or fro (for the Frobenius norm) cond(X,p) or cond(A,p) Calc

    13、ulate the condition number of vector X or matrix A using the norm specified by p.,LU Factorization,LU factorization involves two steps: Decompose the A matrix into a product of:a lower triangular matrix L with 1 for each entry on the diagonal. and an upper triangular matrix U Substitution to solve f

    14、or x Gauss elimination can be implemented using LU factorization The forward-elimination step of Gauss elimination comprises the bulk of the computational effort. LU factorization methods separate the time-consuming elimination of the matrix A from the manipulations of the right-hand-side b.,Gauss E

    15、limination as LU Factorization,To solve Ax=b, first decompose A to get LUx=b MATLABs lu function can be used to generate the L and U matrices: L, U = lu(A) Step 1 solve Ly=b; y can be found using forward substitution. Step 2 solve Ux=y, x can be found using backward substitution. In MATLAB: L, U = l

    16、u(A) d = Lb x = Ud LU factorization requires the same number of floating point operations (flops) as for Gauss elimination. Advantage once A is decomposed, the same L and U can be used for multiple b vectors.,Cholesky Factorization,A symmetric matrix a square matrix, A, that is equal to its transpos

    17、e:A = AT (T stands for transpose). The Cholesky factorization based on the fact that a symmetric matrix can be decomposed as:A= UTU The rest of the process is similar to LU decomposition and Gauss elimination, except only one matrix, U, needs to be stored. Cholesky factorization with the built-in ch

    18、ol command: U = chol(A) MATLABs left division operator examines the system to see which method will most efficiently solve the problem. This includes trying banded solvers, back and forward substitutions, Cholesky factorization for symmetric systems. If these do not work and the system is square, Gauss elimination with partial pivoting is used.,


    注意事项

    本文(Engineering Analysis ENG 3420 Fall 2009.ppt)为本站会员(deputyduring120)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开