欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    第四章 自适应信号处理.ppt

    • 资源ID:374255       资源大小:1,017KB        全文页数:49页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第四章 自适应信号处理.ppt

    1、第四章 自适应信号处理,郑宝玉,2,内 容,最优滤波理论与Wiener滤波器 梯度下降算法 横向LMS自适应滤波器 横向RLS自适应滤波器 Kalman滤波器 自适应格型滤波器 自适应格-梯型滤波器 无限脉冲响应自适应滤波器 盲自适应滤波器 自适应滤波器的应用,Kalman滤波器,状态空间方程,Kalman滤波器(续),假设:,线性状态模型、高斯噪声,Kalman滤波器(续),已知:,Kalman滤波器(续),三个基本概念,Kalman滤波器(续),新息,称 为 的新息过程向量,Kalman滤波器(续),估计,状态向量估计误差:,相关矩阵:,校正项,Kalman滤波器(续),例: 是一个时不变

    2、的标量随机变量, 为观测数据,其中 为白噪声。现用Kalman滤波器自适应估计 ,即考虑设计Kalman滤波器的问题。,设计过程:(1)构造状态空间方程;(2)设计 的更新公式,Kalman滤波器(续),LMS、RLS、Kalman算法比较,(1)计算复杂度: LMSRLSKalman 相差不大,(2)RLS算法是“无激励”状态空间模型,下的Kalman滤波算法,(3)收敛速率: LMS: 越大,学习步长越大,收敛越快RLS: 越大, 遗忘作用越弱,收敛越慢时变学习速率、时变遗忘因子Kalman:无收敛问题,无收敛参数,表1 Kalman滤波算法与RLS滤波算法变量对照表,13,内 容,最优滤

    3、波理论与Wiener滤波器 梯度下降算法 横向LMS自适应滤波器 横向RLS自适应滤波器 Kalman滤波器 自适应格型滤波器 自适应格-梯型滤波器 无限脉冲响应自适应滤波器 盲自适应滤波器 自适应滤波器的应用,自适应格型滤波器,格型自适应滤波原理,对称的格型结构n时刻的前向和后向预测误差(残差)服从如下递推关系:,其初值为:,前向和后向预测误差滤波器传递函数递推公式为,其中,自适应格型滤波器,格型自适应滤波原理,对称的格型结构容易推出前、后向滤波器传递函数的一般关系式:,由式(4a)知:,为了使前向滤波器物理可实现,前向滤波器传递函数Am(z)必须是最小相位多项式,即,的零点必须全部在单位圆

    4、内,亦即,从而,这就是格型滤波器时各级反射系数必须满足的条件。,自适应格型滤波器,格型自适应滤波原理,对称的格型结构(续)由式(4b), 即由下式,可见, 格型滤波器的设计归结为前向滤波器的设计。,可知,后向滤波器的权系数与前向滤波器的权系数之间存在以下关系:,自适应格型滤波器,格型自适应滤波原理,格型滤波器设计准则现在讨论前向滤波器A(z)的设计准则。(3)可等价写作,相应的时域表达式为,自适应格型滤波器,格型自适应滤波原理,格型滤波器设计准则定义前、后向滤波器的残差能量,容易证明,上式表明,在格型滤波器设计中有如下三种等价表述: i) 使前向预测滤波器Am(z)残差能量均方误差Fm最小 i

    5、i) 使后向预测滤波器Bm(z)残差能量均方误差Gm最小 iii)使前后向预测滤波器残差能量均方误差(Fm +Gm)/2最小,自适应格型滤波器,格型自适应滤波原理,格型滤波器设计准则上述结论构成格型滤波器的设计基础,而且由此有1) 完全可以仅根据前向残差能量Fm设计格型滤波器, 2) 后向预测误差(残差)正交,这表明,不同级滤波器的后向残差正交,这一特性意味着格型滤波器的前后级是解耦的,故可 独立设计每一级滤波器。 3)阶数越大,前向残差Fm越小。,自适应格型滤波器,格型自适应滤波原理,格型滤波器设计准则总结上述,格型滤波器的设计过程可表述如下:令m=1,2,,并依次设计前向滤波器,当前向残差

    6、能量不再减小时,最小的阶数即为格型滤波器的最优阶数。,自适应格型滤波器,格型自适应滤波原理,格型自适应算法令w(n)为滤波器在n时刻的权系数,并满足,现考虑采用一般能量形式的加权最小二乘法。为此,定义瞬态前后向残差能量,和n时刻及以前时刻前后向残差的加权总能量误差函数,自适应格型滤波器,格型自适应滤波原理,格型自适应算法(续)利用,可得n时刻发射系数,且有,这保证了前向滤波器是最小相位的,即物理可实现的。,自适应格型滤波器,格型自适应滤波原理,格型自适应算法(续)取 并引入,即得,且 服从如下递推关系式:,自适应格型滤波器,格型自适应滤波原理,格型自适应算法(步骤)步骤1 计算预测误差功率和前

    7、后向预测误差的初始值:,步骤2 计算前、后向残差,步骤3 求中间系数,步骤4 计算反射系数:,步骤5 计算预测误差功率:,步骤6 令 ,重做步骤2-5, 直到预测误差功率很小为止.,25,内 容,最优滤波理论与Wiener滤波器 梯度下降算法 横向LMS自适应滤波器 横向RLS自适应滤波器 Kalman滤波器 自适应格型滤波器 自适应格-梯型滤波器 无限脉冲响应自适应滤波器 盲自适应滤波器 自适应滤波器的应用,自适应格-梯型滤波器,预备知识 算法原理,基本方程 更新方程- 阶更新方程- 时间更新方程输出估计,算法步骤,自适应格-梯型滤波器,预备知识,分块矩阵求逆引理 设有分块矩阵:,则有,或,

    8、其中,自适应格-梯型滤波器,预备知识,数据向量与预测系数向量考虑数据向量,则存在两种不同的分块方式,分别对应于前向预测和后向预测。 定义前向预测系数向量和后向预测系数向量,即,自适应格-梯型滤波器,算法原理,基本方程1)数据向量a)对于前向预测:,b)对于后向预测:,自适应格-梯型滤波器,算法原理,基本方程2)预测误差 (l=0,1,n)a)对于前向预测:,b)对于后向预测:,c)对于联合估计:,自适应格-梯型滤波器,算法原理,基本方程3)代价函数(预测误差加权平方和) a)对于于前向预测:,b)对于后向预测:,c)对于联合估计:,自适应格-梯型滤波器,算法原理,基本方程4)最小代价函数对于前

    9、向预测:,对于后向预测:,自适应格-梯型滤波器,算法原理,基本方程5)W-H方程与Wiener解a)对于前向预测:,b)对于后向预测:,c)对于联合估计:,自适应格-梯型滤波器,算法原理,基本方程6)联合方程(联合最小代价函数和W-H方程)对于前向预测:,对于后向预测:,自适应格-梯型滤波器,算法原理,基本方程7) 自相关矩阵对于前向预测:,对于后向预测:,自适应格-梯型滤波器,算法原理,基本方程8)互相关向量a)对于前向预测:,b)对于后向预测:,c)对于联合估计:,自适应格-梯型滤波器,算法原理,基本方程9) 期望响应加权平方和,对于后向预测:,对于前向预测:,自适应格-梯型滤波器,算法原

    10、理,基本方程,10) Kalman增益向量,自适应格-梯型滤波器,算法原理,阶更新方程11)相关矩阵逆矩阵 对于前向预测:,对于后向预测:,自适应格-梯型滤波器,算法原理,阶更新方程12)预测系数向量,后向预测:,联合估计:,前向预测:,自适应格-梯型滤波器,算法原理,阶更新方程13)最小代价函数 对于前向预测:,对于后向预测:,自适应格-梯型滤波器,算法原理,阶更新方程14) 误差函数a)对于前向预测:,b)对于后向预测:,c)对于联合估计:,其中,其中,其中,自适应格-梯型滤波器,算法原理,时间更新方程15)预测系数向量对于前向预测:,对于后向预测:,自适应格-梯型滤波器,算法原理,时间更

    11、新方程 km(n)的更新方程考虑,其中,由此导出,定义,则有,其中,自适应格-梯型滤波器,算法原理,时间更新方程 的更新方程,其中,因为,由此可导出,自适应格-梯型滤波器,算法原理,的阶更新方程,Kalman增益向量可以写为,由上式及(16-17)得,Kalman增益向量还可写为,再注意到,由(22)-(24)得,自适应格-梯型滤波器,算法原理,输出估计由(2c)和(14c),可见,系统的输出估计值是后向残差的加权和。 归纳上述,即得如下RLS格-梯型算法。,其中系统的输出估计值为,自适应格-梯型滤波器,RLS格-梯型算法(先验形式),格型预测器:从n=0出发, 对m=0,1,M-1, 计算阶更新,自适应格-梯型滤波器,RLS格-梯型算法(先验形式),梯型预测器:从n=0出发,对m=0,1,M-1,计算阶更新,初始化:,


    注意事项

    本文(第四章 自适应信号处理.ppt)为本站会员(visitstep340)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开