欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Threads Cannot be Implemented as a Library.ppt

    • 资源ID:373400       资源大小:608KB        全文页数:30页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Threads Cannot be Implemented as a Library.ppt

    1、Threads Cannot be Implemented as a Library,Hans-J. Boehm,About the Author,Hans-J. Boehm Boehm conservative garbage collector Parallel GC for C/C+ Participated in revising the Java Memory Model Co-authored the Memory model for multi-threaded C+ Compiler-centric background,Introduction,Multi-threaded

    2、programs are ubiquitous Many programs need to manage logically concurrent interactions Multiprocessors are becoming mainstream Desktop computers support multiple hardware contexts, which makes them logically multiprocessors Multi-threaded programs are a good way to utilize increasing hardware parall

    3、elism,Thread support,Threads included in language specification Java C# Ada Multiple-threads not a part of language specification C/C+ Thread support provided by add-on libraries Posix threads Ptreads standard does not specify formal semantics for concurrency,Memory Model,Which assignments to a vari

    4、able by one thread can be seen by a concurrently executing thread Sequential Consistency All actions occur in a total order (the execution order) that is consistent with program order; furthermore, each read r of a variable v sees the value written by the write w to v such that: w comes before r in

    5、the execution order, and There is no other write w such that w comes before w and w comes before r in the execution order Happens-Before Simple version of java memory model, slightly too weak Weak Allows for compiler optimizations,Surprising results caused by statement reordering,r1 & r2 are local,

    6、A & B are shared Write in one thread Read of same variable in another thread Write and read are not ordered by synchronization -,Surprising results caused by statement reordering,r1 & r2 are local, A & B are shared Write in one thread Read of same variable in another thread Write and read are not or

    7、dered by synchronization Race Condition!,Pthread approach,Provided as add-on library Include hardware instructions to prevent reordering Avoid compiler reordering by appearing as an opaque function Require disciplined style of synchronization Valid 98% of the time What about the other two percent?,P

    8、thread correctness,Apparently correct programs may fail intermittently New compiler or hardware induced failure Poor performance may force slight rule bending Difficult for programmer to reason about correctness Lets see some examples why,Concurrent modification,Pthread specifications prohibit races

    9、 But is this enough? x=y=0 if(x=1) +y; +y; if(x!=1) -y; if (y=1) +x; +x; if (y!=1) -x; Is x=1 y=1 acceptable? No for sequential consistent interpretation But, if the compiler makes the modifications on the right, there is a race!,T1:,T2:,Why threads cannot be implemented as a library,Argument ( 1 )

    10、Since the compiler is unaware of threads, it is allowed to transform code subject only to sequential correctness constraints and produce a raceBut, example is kind of far-fetched,Rewriting of Adjacent Data,Bit fields on a little endian 32-bit machine Concurrent write to memory location, not variable

    11、.,Implementation of x.a=42 tmp = x; tmp /replace x ,struct int a:17; int b:15 x;,Rewriting of Adjacent Data,Bit fields on a little endian 32-bit machine Concurrent write to memory location, not variable.,Implementation of x.a=42 tmp = x; tmp /replace x ,struct int a:17; int b:15 x;,Updates to x.b in

    12、troduce a race,Why threads cannot be implemented as a library,Argument ( 2 )For languages like C, if the specification does not define when adjacent data can be overwritten, then race conditions can be introduced. If so, then the compiler would know to avoid this optimization,Register promotion,for(

    13、) if (mt) pthread_mutex_lock();x = x .if ( mt) pthread_mutex_unlock(); ,r = x; for() if (mt) x = r; pthread_mutex_lock(); r = x;r = r .if ( mt) x = r; pthread_mutex_unlock(); r = x; x = r;,Repeatedly update globally shared variable x,Register promotion,for() if (mt) pthread_mutex_lock();x = x .if (

    14、mt) pthread_mutex_unlock(); ,r = x; for() if (mt) x = r; pthread_mutex_lock(); r = x;r = r .if ( mt) x = r; pthread_mutex_unlock(); r = x; x = r;,Repeatedly update globally shared variable x Using profile feedback or static heuristics it becomes beneficial to promote x to a register r in the loop,Re

    15、gister promotion,for() if (mt) pthread_mutex_lock();x = x .if ( mt) pthread_mutex_unlock(); ,r = x; for() if (mt) x = r; pthread_mutex_lock(); r = x;r = r .if ( mt) x = r; pthread_mutex_unlock(); r = x; x = r;,Repeatedly update globally shared variable x Using profile feedback or static heuristics i

    16、t becomes beneficial to promote x to a register r in the loop Thus Extra reads and writes introduce possible race conditions,Why threads cannot be implemented as a library,Argument ( 3 ) If the compiler is not aware of existence of threads, and a language specification does not address thread-specif

    17、ic semantic issues, then optimizations might cause race conditions,Implications,Compilers forced into blanket removal of optimization in many cases Or perhaps a toned-down version of the optimization This can degrade performance of code that is not thread-specific,Sieve of Eratosthenes,10,000 10,002

    18、 10,00310,005 10,007 100,000,000false false false false false falsetrue true false false false true true true true false false true true true true true false true true true true true prime true,For(mp=start ; mp 10,000 ; +mp)if(!get(mp) . for(multiple = mp ; multiple 100,000,000 ; multiple+=mp). if(

    19、!get(multiple). set(multiple);,Synchronizing global array access,For(mp=start ; mp 10,000 ; +mp)if(!get(mp) . for(multiple = mp ; multiple 100,000,000 ; multiple+=mp). if(!get(multiple). set(multiple);,Mutex Spin-locks Non-blocking None,Performance results,Pthreads library approaches (1)&(2) cannot

    20、reach optimal levels This algorithm is designed for a weak memory model, which is not possible using thread library,Performance results,Similar results for hyper-threaded p4 processor Even more dramatic performance differences moving to a more parallel processor Itanium HT P4,Additional Implications

    21、 of Pthreads approach,If we choose to allow concurrent accesses to concurrent variables, within library code Unpredictable results can occur without language specifications,x = 1; pthread_mutex_lock(lock); y = 1; pthread_mutex_unlock(lock);,pthread_mutex_lock(lock); y = 1; x= 1; pthread_mutex_unlock

    22、(lock);,Additional Implications of Pthreads approach,If we choose to allow concurrent accesses to concurrent variables, within library code Unpredictable results can occur without language specifications,x = 1; pthread_mutex_lock(lock); y = 1; pthread_mutex_unlock(lock);,pthread_mutex_lock(lock); x

    23、= 1; y = 1; pthread_mutex_unlock(lock);,Is this a problem?,Conclusion,Compilers can introduce race conditions where there are none in source code Library code cannot intervene Impossible to achieve the performance gains of a multiprocessor without direct fine-grained use of atomic operations Which i

    24、s impossible to do in a library based thread implementation Why not just use the java memory model Designed to preserve type-safety which C/C+ are not C+ needs its own memory model,REFERENCES,JSR-133 Expert Group, “JSR-133: Java Memory Model and Thread Specification” http:/www.cs.umd.edu/pugh/java/memoryModel Daniel P. Bovet,Marco Cesati, “Understanding the Linux Kernel 3rd Edition” OReilly Sarita V. Adve, Kourosh Gharachorloo, “Shared Memory Consistency Models: A Tutorial” Digital Western Research Laboratory,Appendix,Happens-Before,Appendix,Section 5,Appendix,Section 5(cont),


    注意事项

    本文(Threads Cannot be Implemented as a Library.ppt)为本站会员(visitstep340)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开