欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    This work partially funded by NSF Grants IIS-9732897, IRIS-.ppt

    • 资源ID:373398       资源大小:1.77MB        全文页数:20页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    This work partially funded by NSF Grants IIS-9732897, IRIS-.ppt

    1、1,This work partially funded by NSF Grants IIS-9732897, IRIS-9729878 and IIS-0119276,Matthew O. Ward, Elke A. Rundensteiner, Jing Yang, Punit Doshi, Geraldine Rosario, Allen R. Martin, Ying-Huey Fua, Daniel Stroe,http:/davis.wpi.edu/xmdv,XmdvTool Interactive Visual Data Exploration System for High-d

    2、imensional Data Sets,Worcester Polytechnic Institute,2,XmdvTool Features,Hierarchical visualization and interaction tools for exploring very large high-dimensional data sets to discover patterns, trends and outliers Applications: Bioterrorism Detection Bioinformatics and Drug Discovery Space Science

    3、 Geology and Geochemistry Systems Monitoring and Performance Evaluation Economics and Business Simulation Design and Analysis Multi-platform support (Unix, Linux, Windows) Public domain software: http:/davis.wpi.edu/xmdv,3,Scale-up to High Dimensions: Visual Hierarchical Dimension Reduction Scale-up

    4、 to Large Data Sets: Interactive Hierarchical Displays, Database Backend with Minmax Encoding, Semantic Caching and Adaptive Prefetching Interlinked Multi-Displays: Parallel Coordinates, Glyphs, Scatterplot Matrices, Dimensional Stacking Visual Interaction Tools: N-Dimensional Brushes, Structure-Bas

    5、ed Brushing, InterRing,Xmdv: Main Features,4,Scale-Up for Large Number of Dimensions,Solution to High Dimensional Datasets: Group Similar Dimensions into Dimension Hierarchy Navigate Dimension Hierarchy by InterRing Form Lower Dimensional Spaces by Dimension Clusters Convey Dimension Cluster Informa

    6、tion by Dissimilarity Display,5,Visual Hierarchical Dimension Reduction Process,6,A 42-dimensional Data Set,Dimension Hierarchy Interaction Tool: InterRing,A 4-Dimensional Subspace,Visual Hierarchical Dimension Reduction Process,7,InterRing - Dimension Hierarchy Navigation and Manipulation,Roll-up/D

    7、rill-down Rotate Zoom in/out,Distort,Modify,8,Dissimilarity Display,Three Axes Method,Mean-Band Method,Diagonal Plot Method,Axis Width Method,9,Scale-up for Large Number of Records,Solution to Large Scale Datasets: Group Similar Records into Data Hierarchy Navigate Data Hierarchy by Structure-Based

    8、Brushing Represent Data Clusters by Mean-Band Method Provide Database Backend Support using MinMax Tree, Caching, Prefetching,10,Interactive Hierarchical Display,Hierarchical Clustering,Structure-Based Brushing,11,Flat Display,Hierarchical Display,Interactive Hierarchical Display,Mean-Band Method in

    9、 Parallel Coordinates,12,Flat Display,Hierarchical Display,Mean-Band Method in Parallel Coordinates,Interactive Hierarchical Display,13,Scalability of Data Access,Approach Attach database system to visualization front-end MinMax hierarchy encoding Key idea: avoid recursive processing Pre-computed Ca

    10、ching Key idea: reduce response time and network traffic Prefetching Key idea: use application hints and predict user patterns Performed during idle time,14,Pre-compute object positions level-of-detail (L) extent values (x,y) preserve tree structure,New query semantics objects are now rectangles sel

    11、ect objects that touch L select objects that touch (x, y) structure-based brush = intersection of two selections,Scalability of Data Access: MinMax Hierarchy Encoding,15,Purpose reduce response time and network traffic Issues visual query cannot directly translate into object IDshigh-level cache spe

    12、cification to avoid complete scans Semantic caching queries are cached rather than objects minimize cost of cache lookup dynamically adapt cached queries to patterns of queries,Scalability of Data Access: Caching,16,Strategy Speculative (no specific hints) navigation remains local both user and data

    13、 set influence exploration Adaptive (strategy changes over time) Evolves as more knowledge becomes available Non-pure (interruptible prefetching) leave buffer in consistent state Requirements non-pure prefetching + large transactions & small object size + semantic caching small granularity (object l

    14、evel) speculative, non-pure prefetcher cache replacement policy + guessing method,Scalability of Data Access: Prefetching,17,Conclusions: Caching reduces response time by 80% Prefetching further reduces response time by 30% Designing better prefetching strategies might help further reduce response t

    15、ime,Scalability of Data Access: Experimental Evaluation,18,Random Strategy,Direction Strategy,Focus Strategy,Mean Strategy,Exponential Weight Average Strategy,Vector Strategies,Data Set Driven Strategy,Localized Speculative Strategies,Scalability of Data Access: Prefetching,19,Xmdv System Implementa

    16、tion,Tools C/C+ TCL/TK OpenGL Oracle 8i Pro*C,20,Publications (available at http:/davis.wpi.edu/xmdv),Jing Yang, Matthew O. Ward and Elke A. Rundensteiner, “InterRing: An Interactive Tool for Visually Navigating and Manipulating Hierarchical Structures“, InfoVis 2002, to appear Punit R. Doshi, Elke

    17、A. Rundensteiner, Matthew O. Ward and Daniel Stroe, “Prefetching For Visual Data Exploration.”Technical Report #: WPI-CS-TR-02-07, 2002 Jing Yang, Matthew O. Ward and Elke A. Rundensteiner, “Interactive Hierarchical Displays: A General Framework for Visualization and Exploration of Large Multivariat

    18、e Data Sets”, Computers and Graphics Journal, 2002, to appear Daniel Stroe, Elke A. Rundensteiner and Matthew O. Ward, “Scalable Visual Hierarchy Exploration”, Database and Expert Systems Applications, pages 784-793, Sept. 2000 Ying-Huey Fua, Matthew O. Ward and Elke A. Rundensteiner, “Hierarchical Parallel Coordinates for Exploration of LargeDatasets”, IEEE Proc. of Visualization, pages 43-50, Oct. 1999 Ying-Huey Fua, Matthew O. Ward and Elke A. Rundensteiner, “Navigating Hierarchies with Structure-Based Brushes”, IEEE Proceedings of Visualization, pages 43-50, Oct. 1999,


    注意事项

    本文(This work partially funded by NSF Grants IIS-9732897, IRIS-.ppt)为本站会员(visitstep340)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开