欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    The PageRank Citation RankingBringing Order to the Web.ppt

    • 资源ID:373317       资源大小:924.50KB        全文页数:14页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    The PageRank Citation RankingBringing Order to the Web.ppt

    1、The PageRank Citation Ranking “Bringing Order to the Web”,Google Design Goals,Scale up to work with much larger collections In 1997, older search engines were breaking down due to manipulations by advertisers, etc. Exhibit high precision among top-ranked documents Many documents are kind-of relevant

    2、 For the Web, relevant should be just the very best documents Provide data sets for academic research on search engines,System Anatomy,Basic Concept,Bibliometrics Use citation patterns like for academic research But Web documents are not reviewed Web documents do not have the same cost of production

    3、/publishing Programs can easily generate pages pointing to another page Very valuable to attempt to game the system,PageRank Design,PageRank Rank importance of pages Each incoming link raises importance Importance increment related to rank of source page Importance increment normalized for number of

    4、 links on source page A high ranking results from Lots of links from low ranked pages Fewer links from highly ranked pages,Ranking Process,Initialize PageRank values based on heuristics Initial values do not change results, only time to converge Repeat until the rankings converge: For each incoming

    5、link L PageRank = PageRank + Rank ( Source (L) ) #Links ( Source (L) ) Model Web user with some chance of jumping to random location PageRank = c * PageRank,Examples,Problem with Subgraphs,The Web is composed of many independent graphs Links among themselves but no links in/out of the set This resul

    6、ts in ranking between independent graphs to be difficult Solution Introduce a decay factor This also increases the rate of convergence,Problem with Dangling Links,Many links go to pages with no outgoing links Influence the distribution of “rank” Dont know how to push their rank back into system duri

    7、ng iteration They are to pages that Have no links Have not been downloaded Are not in a form that the system can identify There are lots of them Solution Remove “dead-ends” during convergence Compute ranks of these after convergence,Implementation,Web issues Infinitely large Web sites, pages, and UR

    8、Ls Much broken HTML Web is constantly changing PageRank Implementation Each URL assigned integer ID Dangling links iteratively pruned from graph Few iterations get rid of most Generate guess at ranking Does not affect outcome (much), just how fast it converges Iterate rank computation until converge

    9、nce Add dangling links back in Iterate rank computation again for the same number of times that it took for dangling links to be removed,Convergence Scaling,Scales well 161 million links require 45 iterations 322 million links require 51 iterations,Searching with PageRank,Google search Uses a variet

    10、y of factors Standard IR measures Proximity Anchor Text PageRank PageRank most valuable for underspecified queries (e.g. few terms, lots of results) “Spam pages” given no/low PageRank to reduce their effect on resulting weights.,PageRank with Title Search,Simple title search with PageRank,AltaVista,

    11、PageRank Applications,Estimating WebTraffic Because it models a random Web surfer Backlink Predictor Like to estimate number of backlinks to identify important pages Use CPU/bandwidth to increase precision Use incomplete data to rank pages to generate order of importance for crawling User Navigation Browser can annotate link based on PageRank to provide user clue as to destinations value,


    注意事项

    本文(The PageRank Citation RankingBringing Order to the Web.ppt)为本站会员(brainfellow396)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开