欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    A Hidden Markov Model for Protein Secondary Structure .ppt

    • 资源ID:373158       资源大小:367.50KB        全文页数:17页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    A Hidden Markov Model for Protein Secondary Structure .ppt

    1、A Hidden Markov Model for Protein Secondary Structure Prediction,Wei-Mou Zheng Institute of Theoretical Physics Academia Sinica PO Box 2735, Beijing 100080 ,Outline,Protein structure A brief review of secondary structure prediction Hidden Markov model: simple-minded Hidden Markov model: realistic Di

    2、scussion References,Protein sequences are written in 20 letters (20 Naturally-occurring amino acid residues): AVCDE FGHIW KLMNY PQRSTHydrophobicCharged+-Polar,Cis-,Trans-,Residues form a directed chain,Rasmol ribbon diagram of GB1 Helix (pink), sheets (yellow) and coil (grey) Hydrogen-bond network3D

    3、 structure secondary structure written in three letters:H, E, C. H: E: C = 34.9: 21.8: 43.3,Bayes formulaCount of Generally, P(x, y) = P(x|y)P(y),Protein sequence A, ai, i=1,2,n Secondary structure sequence S, si, i=1,2,nSecendary structure prediction: 1D amino acid sequences 1D secondary structure

    4、sequence An old problem for more than 30 years Inference of S from A: P(S |A )1. Simple Chou-fasman approachChou-Fasmans propensity of amino acid to conformational state+ independence approximation,Parameter Training Propensities q(a,s)Counts (20x3) from a database: N(a, s)sum over a N(s),sum over s

    5、 N(a),sum over a and s Nq(a,s) = N(a,s) N / N(a) N(s).,2. Garnier-Osguthorpe-Robson (GOR) window versionConditional Independency Weight matrix (20x17)x3 P(W|s) 3. Improved GOR (20x20x16x3, to include pair correlation),Hidden Markov Model (HMM): simple-minded Bayesian formula: P(S|A) = P(S,A)/P(A) P(

    6、S,A) = P(A|S) P(S) Simple version emitting ai at si Markov chain according to P(a|s) For hidden sequenceForward and backward functions,s1,s2,s3,a1,a2,a3,Initial conditions and recursion relationsPartition functionLinear algorithm: Dynamic programmingBaum-Welch (sum) & Viterbi (max),Prob(si=s, si+1=s

    7、) = Ai(s) tss P(ai+1|s) Bi+1(s)/ZProb(si:j),Hidden Markov Model: Realistic 1) Strong correlation in conformational states: at least two consicutive E and three consicutive Hrefined conformational states (243 75) 2) Emission probabilities improved window scores Proportion of accurately predicted site

    8、s 70% (compared with 65% for prediction based on a single sequence)No post-prediction filteringIntegrated (overall) estimation of refined conformation statesMeasure of prediction confidence,Discussions,HMM using refined conformational states and window scores is efficient for protein secondary struc

    9、ture prediction. Better score system should cover more correlation between conformation and sequence. Combining homologous information will improve the prediction accuracy. From secondary structure to 3D structure (structure codes: discretized 3D conformational states),ReferencesLawrence R Rabiner,

    10、A tutorial on hidden Markov models and selected appllications in speech recognition Proceeding of the IEEE, 77 (1989) 257-286Burkhard Rost Protein Secondary Structure Prediction Continues to Rise Journal of Structural Biology 134, 204218 (2001),The End,Small,Hydrophobic,Polar,Aromatic,Aliphatic,Positive,Negative,Tiny,P,V,I,F,Y,W,T,L,H,K,R,D,G,A,C,S,N,E,Q,M,


    注意事项

    本文(A Hidden Markov Model for Protein Secondary Structure .ppt)为本站会员(王申宇)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开