欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    The Search Engine Architecture.ppt

    • 资源ID:373104       资源大小:394.50KB        全文页数:27页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    The Search Engine Architecture.ppt

    1、The Search Engine Architecture,CSCI 572: Information Retrieval and Search Engines Summer 2010,Outline,Introduction Google The PageRank algorithm The Google Architecture Architectural components Architectural interconnections Architectural data structures Evaluation of Google Summary,Problems with se

    2、arch engines circa the last decade,Human maintenance Subjective Example: Ranking hits based on $ Automated search engines Quality of result Neglect to take users context into account Searching process High quality results arent always at the top of the list,The Typical Search Engine Process,In what

    3、stages is the most time spent?,How to scale to modern times?,Currently Efficient index Petabyte scale storage space Efficient Crawling Cost effectiveness of hardware Future Qualitative context Maintaining localization data Perhaps send indexing to clients Client computers help gather Googles index i

    4、n a distributed, decentralized fashion?,Google,The whole idea is to keep up with the growth of the web Design Goals: -Remove Junk Results -Scalable document indicesUse of link structure to improve quality filtering Use as an academic digital library Provide search engine datasets Search engine infra

    5、structure and evolution,Google,Archival of information Use of compression Efficient data structures Proprietary file system Leverage of usage data PageRank algorithm Sort of a “lineage” of a source of information Citation graph,PageRank Algorithm,Numerical method to calculate pages importance this a

    6、pproach might well be followed by people doing research Page Rank of a page A With damping factor d Where PR(x) = Page Rank of page X Where C(x) = the amount of outgoing links from page x Where T1Tn is the set of pages with incoming links to page A PR(A)=(1-d)+d(PR(T1)/C(T1)+PR(Tn)/C(Tn) Its actuall

    7、y a bit more complicated than it first looks For instance, whats PR(T1) and PR(T2) and so on?,PageRank Algorithm,An excellent explanation http:/ Since the PR(A) equation is a probability distribution over all web pages linking to web page A And because of the (1-d) term and the d*(PR.) term The Page

    8、Ranks of all the web pages on the web will sum to 1,PageRank: Example,So, where do you start? It turns out that you can effectively “guess” what the PageRanks for the web pages are initially In our example, guess 0 for all of the pages Then you run the PR function to calculate PR for all the web pag

    9、es iteratively You do this until The page ranks for each web page stop changing in each iteration They “settle down”,PageRank: Example,PR(a) = 1 - $damp + $damp * PR(c); PR(b) = 1 - $damp + $damp * (PR(a)/2) PR(c) = 1 - $damp + $damp * (PR(a)/2 + PR(b) + PR(d); PR(d) = 1 - $damp;,Below is the iterat

    10、ive calculation that we would run,PageRank Algorithm: First 18 iterations,a: 0.00000 b: 0.00000 c: 0.00000 d: 0.00000 a: 0.15000 b: 0.21375 c: 0.39544 d: 0.15000 a: 0.48612 b: 0.35660 c: 0.78721 d: 0.15000 a: 0.81913 b: 0.49813 c: 1.04904 d: 0.15000 a: 1.04169 b: 0.59272 c: 1.22403 d: 0.15000 a: 1.1

    11、9042 b: 0.65593 c: 1.34097 d: 0.15000 a: 1.28982 b: 0.69818 c: 1.41912 d: 0.15000 a: 1.35626 b: 0.72641 c: 1.47136 d: 0.15000 a: 1.40065 b: 0.74528 c: 1.50626 d: 0.15000 a: 1.43032 b: 0.75789 c: 1.52959 d: 0.15000 a: 1.45015 b: 0.76632 c: 1.54518 d: 0.15000 a: 1.46341 b: 0.77195 c: 1.55560 d: 0.1500

    12、0 a: 1.47226 b: 0.77571 c: 1.56257 d: 0.15000 a: 1.47818 b: 0.77823 c: 1.56722 d: 0.15000 a: 1.48214 b: 0.77991 c: 1.57033 d: 0.15000 a: 1.48478 b: 0.78103 c: 1.57241 d: 0.15000 a: 1.48655 b: 0.78178 c: 1.57380 d: 0.15000 a: 1.48773 b: 0.78228 c: 1.57473 d: 0.15000,PageRank: next 13 iterations,a: 1.

    13、48852 b: 0.78262 c: 1.57535 d: 0.15000 a: 1.48904 b: 0.78284 c: 1.57576 d: 0.15000 a: 1.48940 b: 0.78299 c: 1.57604 d: 0.15000 a: 1.48963 b: 0.78309 c: 1.57622 d: 0.15000 a: 1.48979 b: 0.78316 c: 1.57635 d: 0.15000 a: 1.48990 b: 0.78321 c: 1.57643 d: 0.15000 a: 1.48997 b: 0.78324 c: 1.57649 d: 0.150

    14、00 a: 1.49001 b: 0.78326 c: 1.57652 d: 0.15000 a: 1.49004 b: 0.78327 c: 1.57655 d: 0.15000 a: 1.49007 b: 0.78328 c: 1.57656 d: 0.15000 a: 1.49008 b: 0.78328 c: 1.57657 d: 0.15000 a: 1.49009 b: 0.78329 c: 1.57658 d: 0.15000 a: 1.49009 b: 0.78329 c: 1.57659 d: 0.15000,PageRank: Last 9 iterations,a: 1.

    15、49010 b: 0.78329 c: 1.57659 d: 0.15000 a: 1.49010 b: 0.78329 c: 1.57659 d: 0.15000 a: 1.49010 b: 0.78329 c: 1.57659 d: 0.15000 a: 1.49010 b: 0.78329 c: 1.57659 d: 0.15000 a: 1.49011 b: 0.78329 c: 1.57660 d: 0.15000 a: 1.49011 b: 0.78330 c: 1.57660 d: 0.15000 a: 1.49011 b: 0.78330 c: 1.57660 d: 0.150

    16、00 a: 1.49011 b: 0.78330 c: 1.57660 d: 0.15000 a: 1.49011 b: 0.78330 c: 1.57660 d: 0.15000 Average pagerank = 1.0000,Google Architecture,Key components Interconnections Data structures A reference architecture for search engines?,Google Data Components,BigFiles Repository Use zlib to compress Lexico

    17、n Word base Hit Lists Word-document ID map Document Indexing Forward Index Inverted Index,Google File System (GFS),BigFiles A.k.a. Googles Proprietary Filesystem 64-bit addressable Compression Conventional operating systems dont suffice No explanation of why? GFS: http:/ Key Data Components,Reposito

    18、ry Stores full text of web pages Use zlib to compress Zlib less efficient than bzip Tradeoff of time complexity versus space efficiency Bzip more space efficient, but slower Why is it important to compress the pages?,Google Lexicon,Lexicon Contains 14 million words Implemented as a hash table of poi

    19、nters to words Full explanation beyond the scope of this discussion Why is it important to have a lexicon? Tokenization Analysis Language Identification SPAM,Mapping queries to hits,HitLists wordID-(docID,position,font,capitalization) mapping Takes up most of the space in the forward and inverted in

    20、dices Types: Fancy,Plain,Anchor,Document Indexing,Document Indexing Forward Index docIDs-wordIDs Partially sorted Duplicated doc IDs Makes it easier for final indexing and coding Inverted Index wordIDs-docIDs 2 sets of inverted barrels,Crawling and Indexing,Crawling Distributed, Parallel Social issu

    21、es Bringing down web servers: politeness Copyright issues Text versus code Indexing Developed their own web page parser Barrels Distribution of compressed documents Sorting,Googles Query Evaluation,1: Parse the query 2: Convert words into WordIDs Using Lexicon 3: Select the barrels that contain docu

    22、ments which match the WordIDs 4: Search through documents in the selected barrels until one is discovered that matches all the search terms 5: Compute that documents rank (using PageRank as one of the components) 6: Repeat step 4 until no documents are found and weve went through all the barrels 7:

    23、Sort the set of returned documents by document rank and return the top k documents,Google Evaluation,Performed by generating numerical results Query satisfaction Bill Clinton Example Storage requirements 55GB Total System Performance 9 days to download 26 million pages 63 hours to get the final 11 m

    24、illion (at the time) Search Performance Between 1 and 10 seconds for most queries (at the time),Wrapup,Loads of future work Even at that time, there were issues of: Information extraction from semi-structured sources (such as web pages) Still an active area of research Search engines as a digital li

    25、brary What services, APIs and toolkits should a search engine provide? What storage methods are the most efficient? From 2005 to 2010 to ? Enhancing metadata Automatic markup and generation What are the appropriate fields? Automatic Concept Extraction Present the Searcher with a context Searching la

    26、nguages: beyond context-free queries Other types of search: Facet, GIS, etc.,The Future?,User poses keyword query search “Google-like” result page comes back Along with each link returned, there will be A “Concept Map” outlining using extraction methods what the “real” content of the document is This basically allows you to “visually” see what the page rank is Discover information visually Existing evidence that this works well http:/ Carrot2/3 clustering,Concept Map,


    注意事项

    本文(The Search Engine Architecture.ppt)为本站会员(medalangle361)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开