欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Monitoring Streams -- A New Class of Data Management .ppt

    • 资源ID:373014       资源大小:603KB        全文页数:33页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Monitoring Streams -- A New Class of Data Management .ppt

    1、Monitoring Streams - A New Class of Data Management Applications,Don Carney Brown UniversityUur etintemel Brown UniversityMitch Cherniack Brandeis UniversityChristian Convey Brown UniversitySangdon Lee Brown UniversityGreg Seidman Brown UniversityMichael Stonebraker MITNesime Tatbul Brown University

    2、Stan Zdonik Brown University,Background,MIT/Brown/Brandeis team First Aurora, then Borealis Practical system Designed for Scalablility: 106 stream inputs, queries QoS-Driven Resource Management Stream Storage Management Realiability/ Fault Tolerance Distribution and AdaptivityFirst stream startup: S

    3、treamBase Financial applications,Example Stream Applications,Market Analysis Streams of Stock Exchange Data Critical Care Streams of Vital Sign Measurements Physical Plant Monitoring Streams of Environmental Readings Biological Population Tracking Streams of Positions from Individuals of a Species,N

    4、ot Your Average DBMS,External, Autonomous Data Sources Querying Time-Series Triggers-in-the-large Real-time response requirements Noisy Data, Approximate Query Results,Outline,2. Aurora Overview/ Query Model Runtime Operation Adaptivity,Aurora from 100,000 Feet,Query,. . .,. . .,Query,. . .,Query,.

    5、. .,. . .,. . .,. . .,Aurora from 100 Feet,. . .,. . .,. . .,. . .,. . .,Queries = Workflow (Boxes and Arcs) Workflow Diagram = “Aurora Network” Boxes = Query Operators Arcs = Streams,s,s,m,s,m,s,Slide,Tumble,m,s,Streams (Arcs) stream: tuple sequence from common source (e.g., sensor) tuples timestam

    6、ped on arrival (Internal use: QoS),Query Operators (Boxes) Simple: FILTER, MAP, RESTREAM Binary: UNION, JOIN, RESAMPLE Windowed: TUMBLE, SLIDE, XSECTION, WSORT,Aurora in Action,. . .,. . .,. . .,. . .,. . .,s,s,m,s,m,s,Slide,Tumble,m,s,s,s,s,s,s,s,m,m,s,s,s,s,s,s,s,s,m,m,s,s,s,s,m,m,App,Tumble,Tumbl

    7、e,App,“Box-at-a-time” Scheduling,Arcs Tuple Queues,Outputs Monitored for QoS,Continuous and Historical Queries,Connection Point,1 Hour,Quality-of-Service (QoS),Output Value,Specifies “Utility” Of Imperfect Query Results Delay-Based (specify utility of late results) Delivery-Based, Value-Based (speci

    8、fy utility of partial results)QoS InfluencesScheduling, Storage Management, Load Shedding,% Tuples Delivered,B,Delay,A,C,Talk Outline,Introduction 2. Aurora Overview 3. Runtime Operation 4. Adaptivity 5. Related Work and Conclusions,Runtime Operation Basic Architecture,Scheduler,QOS Monitor,Box Proc

    9、essors,Router,Runtime Operation Scheduling: Maximize Overall QoS,Choice 1:,A: Cost: 1 sec,(, age: 1 sec),B: Cost: 2 sec,(, age: 3 sec),Delay = 2 sec Utility = 0.5,Delay = 5 sec Utility = 0.8,Schedule Box A now rather than later Ideal: Maximize Overall Utility Presently exploring scalable heuristics

    10、(e.g., feedback-based),Choice 2:,Runtime Operation Scheduling: Minimizing Per Tuple Processing Overhead,Train Scheduling:,A,B,A (x),A (y),A (z),B (A (x),B (A (y),B (A (z),Default Operation: = Context Switch,Run-time Queue Management Prefetch Queues Prior to Being Scheduled Drop Tuples from Queues to

    11、 Improve QoS2. Connection Point ManagementSupport Efficient (Pull-Based) Access to Historical DataE.g., indexing, sorting, clustering, ,Runtime Operation Storage Management,Talk Outline,Introduction 2. Aurora Overview 3. Runtime Operation 4. Adaptivity 5. Related Work and Conclusions,Stream Query Op

    12、timization,Differences with Traditional Query Optimization?,Stream Query Optimization,New classes of operators (windows) may mean new rewrites New execution modes (continuous/pipelining) More dynamic fluctuations in statistics compile time optimization not possible Global optimization not practical;

    13、 as huge query networks Adaptive optimization. Other cost models taking memory into account, not throughput but output rate, etc. Query optimization and load shedding,Query Optimization,Compile-time, Global Optimization InfeasibleToo Many BoxesToo Much Volatility in Network, Data,Dynamic, Local Opti

    14、mizationThreshold re when to optimize,Motivation of Query Migration,Continuous query over streams Statistics unknown before start Statistics changing during execution Stream rates, arrival pattern, distribution, etcNeed for dynamic adaptation Plan re-optimization Change the shape of query plan tree,

    15、Run-time Plan Re-Optimization,Step 1 - Decide when to optimize Statistics Monitoring Step 2 Generate new query plan Query Optimization Step 3 Replace current plan by new plan Plan Migration,Adaptivity in Query Optimization,Dynamic Optimization : Migration,3. Drain Subnetwork,4. Optimize Subnetwork,5

    16、. Turn on Taps,1. Identify Subnetwork,2. Buffer Inputs,Nave Plan Migration Strategy,Migration Steps Pause execution of old plan Drain out all tuples inside old plan Replace old plan by new plan Resume execution of new plan,AB,BC,A,B,C,AB,BC,A,B,C,Problem: Works for stateless operators only,Stateful

    17、Operator in CQ,Why stateful Need non-blocking operators in CQ Operator needs to output partial results State data structure keep received tuples,AB,A,B,b1,b2,b3,b4,b5,ax,State A,State B,ax,ax,b2,ax,b3,Key Observation: The purge of tuples in states relies on processing of new tuples.,Example: Symmetr

    18、ic NL join w/ window constraints,Nave Migration Strategy Revisited,Steps (1) Pause execution of old plan (2) Drain out all tuples inside old plan (3) Replace old plan by new plan (4) Resume execution of new plan,AB,BC,A,B,C,(2) All tuples drained,(4) Processing Resumed,(3) Old Replaced By new,Deadlo

    19、ck Waiting Problem:,Adaptivity Query Optimization,State Movement Protocol Parallel Track Protocol,Moving State Strategy,Basic idea Share common states between two migration boxes Key steps State Matching Match states based on IDs. State Moving Create new pointers for matched states in new box Whats

    20、left? Unmatched states in new box,CD,SABC,SD,BC,SAB,SC,AB,SA,SB,AB,SA,SBCD,CD,SBC,SD,BC,SB,SC,QA,QB,QC,QD,QA,QB,QC,QD,QABCD,QABCD,Old Box,New Box,Parallel Track Strategy,Basic idea Execute both plans in parallel and gradually “push” old tuples out of old box by purging Key steps Connect boxes Execut

    21、e in parallel Until old box “expired” (no old tuple or sub-tuple) Disconnect old box Start execute new box only,CD,SABC,SD,BC,SAB,SC,AB,SA,SB,AB,SA,SBCD,CD,SBC,SD,BC,SB,SC,QA,QB,QC,QD,QA,QB,QC,QD,QABCD,QABCD,1. Two Load Shedding Techniques: Random Tuple DropsAdd DROP box to network (DROP a special c

    22、ase of FILTER) Position to affect queries w/ tolerant delivery-based QoS reqtsSemantic Load SheddingFILTER values with low utility (acc to value-based QoS)2. Triggered by QoS Monitore.g., after Latency Analysis reveals certain applications are continuously receiving poor QoS,Adaptivity Load Shedding

    23、,Adaptivity Detecting Overload,Throughput Analysis,Cost = c Selectivity = s,Input rate = r,1/c r Problem,Latency Analysis,Implementation GUI,Implementation Runtime,Conclusions,Aurora Stream Query Processing SystemDesigned for Scalability QoS-Driven Resource Management Continuous and Historical Queries Stream Storage Management Implemented PrototypeWeb site: www.cs.brown.edu/research/aurora/,


    注意事项

    本文(Monitoring Streams -- A New Class of Data Management .ppt)为本站会员(dealItalian200)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开