欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    Introduction to Smoothing Splines.ppt

    • 资源ID:372936       资源大小:322.50KB        全文页数:39页
    • 资源格式: PPT        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Introduction to Smoothing Splines.ppt

    1、Introduction to Smoothing Splines,Tongtong Wu Feb 29, 2004,Outline,Introduction Linear and polynomial regression, and interpolation Roughness penalties Interpolating and Smoothing splines Cubic splines Interpolating splines Smoothing splines Natural cubic splines Choosing the smoothing parameter Ava

    2、ilable software,Key Words,roughness penalty penalized sum of squares natural cubic splines,Motivation,Motivation,Motivation,Motivation,Spline(y18),Introduction,Linear and polynomial regression : Global influence Increasing of polynomial degrees happens in discrete steps and can not be controlled con

    3、tinuously Interpolation Unsatisfactory as explanations of the given data,Roughness penalty approach,A method for relaxing the model assumptions in classical linear regression along lines a little different from polynomial regression.,Roughness penalty approach,Aims of curving fitting A good fit to t

    4、he data To obtain a curve estimate that does not display too much rapid fluctuation Basic idea: making a necessary compromise between the two rather different aims in curve estimation,Roughness penalty approach,Quantifying the roughness of a curve An intuitive way:(g: a twice-differentiable curve) M

    5、otivation from a formalization of a mechanical device: if a thin piece of flexible wood, called a spline, is bent to the shape of the graph g, then the leading term in the strain energy is proportional to,Roughness penalty approach,Penalized sum of squaresg: any twice-differentiable function on a,b

    6、: smoothing parameter (rate of exchange between residual error and local variation) Penalized least squares estimator,Roughness penalty approach,Curve for a large value of,Roughness penalty approach,Curve for a small value of,Interpolating and Smoothing Splines,Cubic splines Interpolating splines Sm

    7、oothing splines Choosing the smoothing parameter,Cubic Splines,Given at1t2tnb, a function g is a cubic spline if On each interval (a,t1), (t1,t2), , (tn,b), g is a cubic polynomial The polynomial pieces fit together at points ti (called knots) s.t. g itself and its first and second derivatives are c

    8、ontinuous at each ti, and hence on the whole a,b,Cubic Splines,How to specify a cubic splineNatural cubic spline (NCS) if its second and third derivatives are zero at a and b, which implies d0=c0=dn=cn=0, so that g is linear on the two extreme intervals a,t1 and tn,b.,Natural Cubic Splines,Value-sec

    9、ond derivative representation We can specify a NCS by giving its value and second derivative at each knot ti. Definewhich specify the curve g completely. However, not all possible vectors represent a natural spline!,Natural Cubic Splines,Value-second derivative representation Theorem 2.1The vector a

    10、nd specify a natural spline g if and only if Then the roughness penalty will satisfy,Natural Cubic Splines,Value-second derivative representation,Natural Cubic Splines,Value-second derivative representation R is strictly diagonal dominant, i.e. R is positive definite, so we can define,Interpolating

    11、Splines,To find a smooth curve that interpolate (ti,zi), i.e. g(ti)=zi for all i. Theorem 2.2Suppose and t1tn. Given any values z1,zn, there is a unique natural cubic spline g with knots ti satisfying,Interpolating Splines,The natural cubic spline interpolant is the unique minimizer of over S2a,b th

    12、at interpolate the data. Theorem 2.3Suppose g is the interpolant natural cubic spline, then,Smoothing Splines,Penalized sum of squaresg: any twice-differentiable function on a,b : smoothing parameter (rate of exchange between residual error and local variation) Penalized least squares estimator,Smoo

    13、thing Splines,1. The curve estimator is necessarily a natural cubic spline with knots at ti, for i=1,n. Proof: suppose g is the NCS,Smoothing Splines,2. Existence and uniqueness Let then since be precisely the vector of . Express ,Smoothing Splines,2. Theorem 2.4Let be the natural cubic spline with

    14、knots at ti for which . Then for any in S2a,b,Smoothing Splines,3. The Reinsch algorithmThe matrix has bandwidth 5 and is symmetric and strictly positive-definite, therefore it has a Cholesky decomposition,Smoothing Splines,3. The Reinsch algorithm for spline smoothingStep 1: Evaluate the vector .St

    15、ep 2: Find the non-zero diagonals of and hence the Cholesky decomposition factors L and D. Step 3: Solve for by forward and back substitution.Step 4: Find g by .,Smoothing Splines,4. Some concluding remarks Minimizing curve essentially does not depend on a and b, as long as all the data points lie b

    16、etween a and b. If n=2, for any , setting to be the straight line through the two points (t1,Y1) and (t2,Y2) will reduce S(g) to zero. If n=1, the minimizer is no longer unique, since any straight line through (t1,Y1) will yield a zero value S(g).,Choosing the Smoothing Parameter,Two different philo

    17、sophical approaches Subjective choice Automatic method chosen by data Cross-validation Generalized cross-validation,Choosing the Smoothing Parameter,Cross-validationGeneralized cross-validation,Available Software,smooth.spline in R Description:Fits a cubic smoothing spline to the supplied data. Usag

    18、e: plot(speed, dist) cars.spl - smooth.spline(speed, dist) cars.spl2 - smooth.spline(speed, dist, df=10) lines(cars.spl, col = “blue“) lines(cars.spl2, lty=2, col = “red“),Available Software,Example 1library(modreg)y18 - c(1:3,5,4,7:3,2*(2:5),rep(10,4)xx - seq(1,length(y18), len=201)(s2 - smooth.spl

    19、ine(y18) # GCV(s02 - smooth.spline(y18, spar = 0.2)plot(y18, main=deparse(s2$call), col.main=2) lines(s2, col = “blue“); lines(s02, col = “orange“); lines(predict(s2, xx), col = 2)lines(predict(s02, xx), col = 3); mtext(deparse(s02$call), col = 3),Available Software,Example 1,Available Software,Exam

    20、ple 2data(cars) # N=50, n (# of distinct x) =19attach(cars)plot(speed, dist, main = “data(cars) & smoothing splines“)cars.spl df =“,round(cars.spl$df,1), “s( * , df = 10)“), col = c(“blue“,“red“), lty = 1:2, bg=bisque)detach(),Available Software,Example 2,Extensions of Roughness penalty approach,Sem

    21、iparametric modeling: a simple application to multiple regressionGeneralized linear models (GLM) To allow all the explanatory variables to be nonlinearAdditive model approach,Reference,P.J. Green and B.W. Silverman (1994) Nonparametric Regression and Generalized Linear Models. London: Chapman & Hall,


    注意事项

    本文(Introduction to Smoothing Splines.ppt)为本站会员(livefirmly316)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开