欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2015年辽宁省丹东市中考真题数学及答案解析.docx

    • 资源ID:1512004       资源大小:393.15KB        全文页数:17页
    • 资源格式: DOCX        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2015年辽宁省丹东市中考真题数学及答案解析.docx

    1、2015年 辽 宁 省 丹 东 市 中 考 真 题 数 学一 、 选 择 题 (下 列 各 题 的 备 选 答 案 中 , 只 有 一 个 是 正 确 的 .每 小 题 3分 , 共 24分 )1. -2015 的 绝 对 值 是 ( )A.-2015B.2015C. 12015D.- 12015解 析 : 根 据 相 反 数 的 意 义 , 求 解 .注 意 正 数 的 绝 对 值 是 本 身 , 0的 绝 对 值 为 0, 负 数 的 绝 对值 是 其 相 反 数 .-2015 是 负 数 , 绝 对 值 等 于 其 相 反 数 , 即 -2015 的 绝 对 值 是 2015;答 案 :

    2、 B. 2.据 统 计 , 2015年 在 “ 情 系 桃 源 , 好 运 丹 东 ” 的 鸭 绿 江 桃 花 观 赏 活 动 中 , 6 天 内 参 与 人 次 达27.8万 .用 科 学 记 数 法 将 27.8万 表 示 为 ( )A.2.78 106B.27.8 106C.2.78 105D.27.8 105解 析 : 科 学 记 数 法 的 表 示 形 式 为 a 10n的 形 式 , 其 中 1 |a| 10, n 为 整 数 .确 定 n 的 值时 , 要 看 把 原 数 变 成 a时 , 小 数 点 移 动 了 多 少 位 , n 的 绝 对 值 与 小 数 点 移 动 的 位

    3、 数 相 同 .当原 数 绝 对 值 1 时 , n 是 正 数 ; 当 原 数 的 绝 对 值 1 时 , n 是 负 数 .将 27.8 万 用 科 学 记 数 法 表示 为 2.78 10 5.答 案 : C.3.如 图 , 是 某 几 何 体 的 俯 视 图 , 该 几 何 体 可 能 是 ( )A.圆 柱B.圆 锥C.球 D.正 方 体解 析 : 根 据 几 何 体 的 俯 视 图 是 从 上 面 看 , 所 得 到 的 图 形 分 别 写 出 各 个 几 何 体 的 俯 视 图 判 断 .圆 柱 的 俯 视 图 是 圆 , A错 误 ; 圆 锥 的 俯 视 图 是 圆 , 且 中

    4、心 由 一 个 实 点 , B 正 确 ; 球 的 俯 视 图是 圆 , C错 误 ; 正 方 体 的 俯 视 图 是 正 方 形 , D 错 误 .答 案 : B.4.如 果 一 组 数 据 2, 4, x, 3, 5 的 众 数 是 4, 那 么 该 组 数 据 的 平 均 数 是 ( )A.5.2B.4.6 C.4D.3.6解 析 : 根 据 这 组 数 据 的 众 数 是 4, 求 出 x的 值 , x=4.根 据 平 均 数 的 公 式 求 出 平 均 数 . 15x (2+4+4+3+5)=3.6.答 案 : D.5.下 列 计 算 正 确 的 是 ( )A.2a+a=3a 2B.

    5、4-2=- 116C. 9= 3D.(a3)2=a6解 析 : A、 依 据 合 并 同 类 项 法 则 计 算 , 2a+a=3a, 故 A 错 误 ; B、 根 据 负 整 数 指 数 幂 的 法 则计 算 , 4 -2= 214 = 116, 故 B错 误 ; C、 根 据 算 术 平 方 根 的 定 义 , 9=3, 故 C 错 误 ; D、 依 据 幂的 乘 方 的 运 算 法 则 进 行 计 算 , (a3)2=a3 2=a6, 故 D 正 确 .答 案 : D.6.如 图 , 在 ABC中 , AB=AC, A=30 , E 为 BC 延 长 线 上 一 点 , ABC与 ACE

    6、的 平 分 线 相交 于 点 D, 则 D 的 度 数 为 ( ) A.15B.17.5C.20D.22.5解 析 : ABC的 平 分 线 与 ACE的 平 分 线 交 于 点 D, 1= 2, 3= 4, ACE= A+ ABC,即 1+ 2= 3+ 4+ A, 2 1=2 3+ A, 1= 3+ D, D=12 A=12 30 =15 .答 案 : A.7.过 矩 形 ABCD 的 对 角 线 AC 的 中 点 O 作 EF AC, 交 BC边 于 点 E, 交 AD 边 于 点 F, 分 别 连 接AE、 CF.若 AB= 3, DCF=30 , 则 EF的 长 为 ( ) A.2B.

    7、3C. 32D. 3解 析 : 矩 形 对 边 AD BC, ACB= DAC, O 是 AC 的 中 点 , AO=CO,在 AOF和 COE中 ,ACB DACAO COAOF COE , AOF COE(ASA), OE=OF,又 EF AC, 四 边 形 AECF 是 菱 形 , DCF=30 , ECF=90 -30 =60 , CEF是 等 边 三 角 形 , EF=CF, AB= 3, CD=AB= 3, DCF=30 , CF= 3 32 =2, EF=2.答 案 : A.8.一 次 函 数 y=-x+a-3(a 为 常 数 )与 反 比 例 函 数 y=-4x 的 图 象 交

    8、 于 A、 B两 点 , 当 A、 B 两 点 关于 原 点 对 称 时 a的 值 是 ( )A.0B.-3C.3D.4 解 析 : 设 A(t, -4t ), A、 B两 点 关 于 原 点 对 称 , B(-t, 4t ),把 A(t, -4t ), B(-t, 4t )分 别 代 入 y=-x+a-3得 -4t =-t+a-3, 4t =t+a-3,两 式 相 加 得 2a-6=0, a=3.答 案 : C.二 、 填 空 题 (每 小 题 3 分 , 共 24分 )9.如 图 , 正 六 边 形 卡 片 被 分 成 六 个 全 等 的 正 三 角 形 .若 向 该 六 边 形 内 投

    9、掷 飞 镖 , 则 飞 镖 落 在 阴 影 区 域 的 概 率 为 .解 析 : 如 图 : 转 动 转 盘 被 均 匀 分 成 6部 分 , 阴 影 部 分 占 2 份 , 飞 镖 落 在 阴 影 区 域 的 概 率 是2 16 3 ;答 案 : 13.10.如 图 , 1= 2=40 , MN平 分 EMB, 则 3= . 解 析 : 2= MEN, 1= 2=40 , 1= MEN, AB CD, 3+ BMN=180 , MN 平 分 EMB, BMN=12 (180 -40 )=70 , 3=180 -70 =110 .答 案 : 110.11.分 解 因 式 : 3x 2-12x+

    10、12= .解 析 : 原 式 =3(x2-4x+4)=3(x-2)2,答 案 : 3(x-2)212.若 a 6 b, 且 a、 b 是 两 个 连 续 的 整 数 , 则 ab= .解 析 : 先 估 算 出 6 的 范 围 , 2 6 3, a=2, b=3, a b=8.答 案 : 8.13.不 等 式 组 2 3 53 2 1xx 的 解 集 为 .解 析 : 2 3 53 2 1xx ,由 得 , x -1,由 得 , x 1.所 以 , 不 等 式 组 的 解 集 为 -1 x 1. 答 案 : -1 x 1.14.在 菱 形 ABCD中 , 对 角 线 AC, BD的 长 分 别

    11、 是 6 和 8, 则 菱 形 的 周 长 是 .解 析 : AC与 BD 相 交 于 点 O, 如 图 , 四 边 形 ABCD 为 菱 形 , AC BD, OD=OB=12 BD=4, OA=OC=12 AC=3, AB=BC=CD=AD,在 Rt AOD中 , OA=3, OB=4, AD= 2 23 4 =5, 菱 形 ABCD的 周 长 =4 5=20.答 案 : 20.15.若 x=1 是 一 元 二 次 方 程 x 2+2x+a=0的 一 个 根 , 那 么 a= .解 析 : 将 x=1代 入 得 : 1+2+a=0,解 得 : a=-3.答 案 : -3.16.如 图 ,

    12、直 线 OD 与 x 轴 所 夹 的 锐 角 为 30 , OA1的 长 为 1, A1A2B1、 A2A3B2、 A 3A4B3 AnAn+1Bn均 为 等 边 三 角 形 , 点 A1、 A2、 A3 An+1在 x 轴 的 正 半 轴 上 依 次 排 列 , 点 B1、B2、 B3 Bn在 直 线 OD上 依 次 排 列 , 那 么 点 Bn的 坐 标 为 .解 析 : A 1B1A2为 等 边 三 角 形 , B1A1A2=60 , B1OA2=30 , B1OA2= A1B1O=30 , 可 求 得 OA2=2OA1=2,同 理 可 求 得 OAn=2n-1, BnOAn+1=30

    13、, BnAnAn+1=60 , BnOAn+1= OBnAn=30 B nAn=OAn=2n-1,即 AnBnAn+1的 边 长 为 2n-1, 则 可 求 得 其 高 为 32 2n-1= 3 2n-2, 点 Bn的 横 坐 标 为 12 2n-1+2n-1=32 2n-1=3 2n-2, 点 B n的 坐 标 为 (3 2n-2, 3 2n-2).答 案 : (3 2n-2, 3 2n-2).三 、 解 答 题 17.先 化 简 , 再 求 值 : 21 11 2 2aa a , 其 中 a=3.解 析 : 先 计 算 括 号 里 面 的 , 再 把 分 子 、 分 母 因 式 分 解 ,

    14、 约 分 即 可 , 把 a=3代 入 计 算 即 可 .答 案 : 原 式 = 1 22 1 1a aa a a = 11a ,当 a=3时 , 原 式 = 1 13 1 2 .18.如 图 , 在 平 面 直 角 坐 标 系 中 , ABC的 三 个 顶 点 坐 标 分 别 为 A(1, 4), B(4, 2), C(3, 5)(每个 方 格 的 边 长 均 为 1个 单 位 长 度 ). (1)请 画 出 A1B1C1, 使 A1B1C1与 ABC关 于 x 轴 对 称 ;(2)将 ABC绕 点 O 逆 时 针 旋 转 90 , 画 出 旋 转 后 得 到 的 A2B2C2, 并 直 接

    15、 写 出 点 B 旋 转 到 点B2所 经 过 的 路 径 长 .解 析 : (1)根 据 网 格 特 点 , 找 出 点 A、 B、 C 关 于 x 轴 的 对 称 点 A1、 B1、 C1的 位 置 , 然 后 顺 次连 接 即 可 ;(2)分 别 找 出 点 A、 B、 C 绕 点 O 逆 时 针 旋 转 90 的 对 应 点 A2、 B2、 C2的 位 置 , 然 后 顺 次 连 接即 可 , 观 察 可 知 点 B 所 经 过 的 路 线 是 半 径 为 2 24 2 , 圆 心 角 是 90 的 扇 形 , 然 后 根 据 弧长 公 式 进 行 计 算 即 可 求 解 .答 案 :

    16、 (1)如 图 , A 1B1C1即 为 所 求 .(2)如 图 , A2B2C2即 为 所 求 .点 B 旋 转 到 点 B2所 经 过 的 路 径 长 为 : 2 290 4 2 5180 .故 点 B旋 转 到 点 B2所 经 过 的 路 径 长 是 5 . 19.某 中 学 数 学 兴 趣 小 组 为 了 解 本 校 学 生 对 电 视 节 目 的 喜 爱 情 况 , 随 机 调 查 了 部 分 学 生 最 喜爱 哪 一 类 节 目 (被 调 查 的 学 生 只 选 一 类 并 且 没 有 不 选 择 的 ), 并 将 调 查 结 果 制 成 了 如 下 的 两个 统 计 图 (不 完

    17、 整 ).请 你 根 据 图 中 所 提 供 的 信 息 , 完 成 下 列 问 题 : (1)求 本 次 调 查 的 学 生 人 数 ;(2)请 将 两 个 统 计 图 补 充 完 整 , 并 求 出 新 闻 节 目 在 扇 形 统 计 图 中 所 占 圆 心 角 的 度 数 ;(3)若 该 中 学 有 2000名 学 生 , 请 估 计 该 校 喜 爱 电 视 剧 节 目 的 人 数 .解 析 : (1)根 据 喜 爱 电 视 剧 的 人 数 是 69人 , 占 总 人 数 的 23%, 即 可 求 得 总 人 数 ;(2)根 据 总 人 数 和 喜 欢 娱 乐 节 目 的 百 分 数 可

    18、 求 的 其 人 数 , 补 全 即 可 ; 利 用 360 乘 以 对 应 的百 分 比 即 可 求 得 圆 心 角 的 度 数 ;(3)利 用 总 人 数 乘 以 对 应 的 百 分 比 即 可 求 解 .答 案 : (1)69 23%=300(人 ) 本 次 共 调 查 300人 ;(2) 喜 欢 娱 乐 节 目 的 人 数 占 总 人 数 的 20%, 20% 300=60(人 ), 补 全 如 图 ; 360 12%=43.2 , 新 闻 节 目 在 扇 形 统 计 图 中 所 占 圆 心 角 的 度 数 为 43.2 ;(3)2000 23%=460(人 ), 估 计 该 校 有

    19、460人 喜 爱 电 视 剧 节 目 .20.从 甲 市 到 乙 市 乘 坐 高 速 列 车 的 路 程 为 180千 米 , 乘 坐 普 通 列 车 的 路 程 为 240 千 米 .高 速 列车 的 平 均 速 度 是 普 通 列 车 的 平 均 速 度 的 3 倍 .高 速 列 车 的 乘 车 时 间 比 普 通 列 车 的 乘 车 时 间 缩短 了 2小 时 .高 速 列 车 的 平 均 速 度 是 每 小 时 多 少 千 米 ?解 析 : 设 普 通 列 车 平 均 速 度 每 小 时 x千 米 , 则 高 速 列 车 平 均 速 度 每 小 时 3x千 米 , 根 据 题 意可 得

    20、 , 坐 高 铁 走 180千 米 比 坐 普 通 车 240千 米 少 用 2 小 时 , 据 此 列 方 程 求 解 .答 案 : 设 普 通 列 车 平 均 速 度 每 小 时 x 千 米 , 则 高 速 列 车 平 均 速 度 每 小 时 3x 千 米 ,根 据 题 意 得 , 240 180 23x x , 解 得 : x=90,经 检 验 , x=90是 所 列 方 程 的 根 ,则 3x=3 90=270.答 : 高 速 列 车 平 均 速 度 为 每 小 时 270千 米 .21.一 个 不 透 明 的 口 袋 中 装 有 4 个 分 别 标 有 数 字 -1, -2, 3,

    21、4的 小 球 , 它 们 的 形 状 、 大 小 完全 相 同 .小 红 先 从 口 袋 中 随 机 摸 出 一 个 小 球 记 下 数 字 为 x; 小 颖 在 剩 下 的 3 个 小 球 中 随 机 摸出 一 个 小 球 记 下 数 字 为 y.(1)小 红 摸 出 标 有 数 字 3 的 小 球 的 概 率 是 ;(2)请 用 列 表 法 或 画 树 状 图 的 方 法 表 示 出 由 x, y确 定 的 点 P(x, y)所 有 可 能 的 结 果 ;(3)若 规 定 : 点 P(x, y)在 第 一 象 限 或 第 三 象 限 小 红 获 胜 ; 点 P(x, y)在 第 二 象 限

    22、 或 第 四 象 限则 小 颖 获 胜 .请 分 别 求 出 两 人 获 胜 的 概 率 .解 析 : (1)直 接 根 据 概 率 公 式 求 解 ; (2)通 过 列 表 展 示 所 有 12种 等 可 能 性 的 结 果 数 ;(3)找 出 在 第 一 象 限 或 第 三 象 限 的 结 果 数 和 第 二 象 限 或 第 四 象 限 的 结 果 数 , 然 后 根 据 概 率 公式 计 算 两 人 获 胜 的 概 率 .答 案 : (1)小 红 摸 出 标 有 数 字 3 的 小 球 的 概 率 是 14 ;故 答 案 为 14 ; (2)列 表 如 下 :(3)从 上 面 的 表 格

    23、 可 以 看 出 , 所 有 可 能 出 现 的 结 果 共 有 12种 , 且 每 种 结 果 出 现 的 可 能 性 相 同 ,其 中 点 (x, y)在 第 一 象 限 或 第 三 象 限 的 结 果 有 4种 , 第 二 象 限 或 第 四 象 限 的 结 果 有 8种 ,所 以 小 红 获 胜 的 概 率 = 4 112 3 , 小 颖 获 胜 的 概 率 = 8 212 3 . 22.如 图 , AB是 O 的 直 径 , = , 连 接 ED、 BD, 延 长 AE交 BD的 延 长 线 于 点 M, 过 点 D作 O的 切 线 交 AB 的 延 长 线 于 点 C.(1)若 O

    24、A=CD=2 2, 求 阴 影 部 分 的 面 积 ; (2)求 证 : DE=DM.解 析 : (1)连 接 OD, 根 据 已 知 和 切 线 的 性 质 证 明 OCD为 等 腰 直 角 三 角 形 , 得 到 DOC=45 ,根 据 S 阴 影 =S OCD-S 扇 OBD计 算 即 可 ;(2)连 接 AD, 根 据 弦 、 弧 之 间 的 关 系 证 明 DB=DE, 证 明 AMD ABD, 得 到 DM=BD, 得 到 答案 .答 案 : (1)解 : 如 图 , 连 接 OD, CD 是 O切 线 , OD CD, OA=CD=2 2, OA=OD, OD=CD=2 2, O

    25、CD为 等 腰 直 角 三 角 形 , DOC= C=45 , S 阴 影 =S OCD-S 扇 OBD= 245 2 21 2 2 2 22 360 =4- ;(2)证 明 : 如 图 , 连 接 AD, AB 是 O直 径 , ADB= ADM=90 ,又 = , ED=BD, MAD= BAD,在 AMD和 ABD中 ,ADM ADBAD ADMAD BAD , AMD ABD, DM=BD, DE=DM. 23.如 图 , 线 段 AB, CD 表 示 甲 、 乙 两 幢 居 民 楼 的 高 , 两 楼 间 的 距 离 BD 是 60米 .某 人 站 在 A处 测 得 C 点 的 俯

    26、角 为 37 , D点 的 俯 角 为 48 (人 的 身 高 忽 略 不 计 ), 求 乙 楼 的 高 度 CD.(参考 数 据 : sin37 35, tan37 34 , sin48 710, tan48 1110)解 析 : 过 点 C 作 CE AB 交 AB 于 点 E, 在 直 角 ADB中 利 用 三 角 函 数 求 得 AB的 长 , 然 后 在 直角 AEC中 求 得 AE的 长 , 即 可 求 解 . 答 案 : 过 点 C 作 CE AB 交 AB于 点 E,则 四 边 形 EBDC 为 矩 形 , BE=CD CE=BD=60,如 图 , 根 据 题 意 可 得 ,

    27、ADB=48 , ACE=37 , tan48 ABBD ,在 Rt ADB中 ,则 AB=tan48 BD 11 60 6610 (米 ), tan37 AECE ,在 Rt ACE中 ,则 AE=tan37 CE 3 60 454 (米 ), CD=BE=AB-AE=66-45=21(米 ), 乙 楼 的 高 度 CD为 21 米 . 24.某 商 店 购 进 一 种 商 品 , 每 件 商 品 进 价 30元 .试 销 中 发 现 这 种 商 品 每 天 的 销 售 量 y(件 )与每 件 销 售 价 x(元 )的 关 系 数 据 如 下 :(1)已 知 y 与 x 满 足 一 次 函

    28、数 关 系 , 根 据 上 表 , 求 出 y 与 x 之 间 的 关 系 式 (不 写 出 自 变 量 x的 取 值 范 围 );(2)如 果 商 店 销 售 这 种 商 品 , 每 天 要 获 得 150元 利 润 , 那 么 每 件 商 品 的 销 售 价 应 定 为 多 少 元 ?(3)设 该 商 店 每 天 销 售 这 种 商 品 所 获 利 润 为 w(元 ), 求 出 w与 x之 间 的 关 系 式 , 并 求 出 每 件商 品 销 售 价 定 为 多 少 元 时 利 润 最 大 ?解 析 : (1)根 据 待 定 系 数 法 解 出 解 析 式 即 可 ;(2)根 据 题 意

    29、列 出 方 程 解 答 即 可 ;(3)根 据 题 意 列 出 函 数 解 析 式 , 利 用 函 数 解 析 式 的 最 值 解 答 即 可 . 答 案 : (1)设 该 函 数 的 表 达 式 为 y=kx+b, 根 据 题 意 , 得40=3036 32k bk b ,解 得 : 2100kb .故 该 函 数 的 表 达 式 为 y=-2x+100;(2)根 据 题 意 得 ,(-2x+100)(x-30)=150,解 这 个 方 程 得 , x 1=35, x2=45,故 每 件 商 品 的 销 售 价 定 为 35 元 或 45 元 时 日 利 润 为 150元 ;(3)根 据 题

    30、 意 , 得w=(-2x+100)(x-30)=-2x2+160 x-3000=-2(x-40)2+200, a=-2 0 则 抛 物 线 开 口 向 下 , 函 数 有 最 大 值 , 即 当 x=40 时 , w的 值 最 大 , 当 销 售 单 价 为 40元 时 获 得 利 润 最 大 .25.在 正 方 形 ABCD中 , 对 角 线 AC 与 BD交 于 点 O; 在 Rt PMN中 , MPN=90 . (1)如 图 1, 若 点 P 与 点 O重 合 且 PM AD、 PN AB, 分 别 交 AD、 AB于 点 E、 F, 请 直 接 写 出PE与 PF的 数 量 关 系 ;

    31、(2)将 图 1 中 的 Rt PMN 绕 点 O 顺 时 针 旋 转 角 度 (0 45 ). 如 图 2, 在 旋 转 过 程 中 (1)中 的 结 论 依 然 成 立 吗 ? 若 成 立 , 请 证 明 ; 若 不 成 立 , 请 说 明 理由 ; 如 图 2, 在 旋 转 过 程 中 , 当 DOM=15 时 , 连 接 EF, 若 正 方 形 的 边 长 为 2, 请 直 接 写 出 线段 EF 的 长 ; 如 图 3, 旋 转 后 , 若 Rt PMN的 顶 点 P 在 线 段 OB 上 移 动 (不 与 点 O、 B重 合 ), 当 BD=3BP时 , 猜 想 此 时 PE与 P

    32、F 的 数 量 关 系 , 并 给 出 证 明 ; 当 BD=m BP时 , 请 直 接 写 出 PE 与 PF 的数 量 关 系 .解 析 : (1)根 据 正 方 形 的 性 质 和 角 平 分 线 的 性 质 解 答 即 可 ;(2) 根 据 正 方 形 的 性 质 和 旋 转 的 性 质 证 明 FOA EOD, 得 到 答 案 ; 作 OG AB于 G, 根 据 余 弦 的 概 念 求 出 OF的 长 , 根 据 勾 股 定 理 求 值 即 可 ; 过 点 P作 HP BD交 AB 于 点 H, 根 据 相 似 三 角 形 的 判 定 和 性 质 求 出 PE 与 PF的 数 量 关

    33、 系 ,根 据 解 答 结 果 总 结 规 律 得 到 当 BD=m BP 时 , PE与 PF 的 数 量 关 系 .答 案 : (1)PE=PF, 理 由 : 四 边 形 ABCD 为 正 方 形 , BAC= DAC, 又 PM AD、 PN AB, PE=PF;(2) 成 立 , 理 由 : AC、 BD 是 正 方 形 ABCD的 对 角 线 , OA=OD, FAO= EDO=45 , AOD=90 , DOE+ AOE=90 , MPN=90 , FOA+ AOE=90 , FOA= DOE, 在 FOA和 EOD中 , FAO EDOOA ODFOA DOE , FOA EOD

    34、, OE=OF, 即 PE=PF; 作 OG AB于 G, DOM=15 , AOF=15 , 则 FOG=30 , cos FOG=OGOF , 1 2 3332OF , 又 OE=OF, EF=2 63 ; PE=2PF,证 明 : 如 图 3, 过 点 P 作 HP BD 交 AB于 点 H, 则 HPB为 等 腰 直 角 三 角 形 , HPD=90 , HP=BP, BD=3BP, PD=2BP, PD=2 HP,又 HPF+ HPE=90 , DPE+ HPE=90 , HPF= DPE,又 BHP= EDP=45 , PHF PDE, 12PF PHPE PD ,即 PE=2PF

    35、,由 此 规 律 可 知 , 当 BD=m BP 时 , PE=(m-1) PF. 26.如 图 , 已 知 二 次 函 数 y=ax2+32 x+c的 图 象 与 y 轴 交 于 点 A(0, 4), 与 x轴 交 于 点 B、 C,点 C 坐 标 为 (8, 0), 连 接 AB、 AC.(1)请 直 接 写 出 二 次 函 数 y=ax 2+32 x+c的 表 达 式 ;(2)判 断 ABC的 形 状 , 并 说 明 理 由 ;(3)若 点 N 在 x 轴 上 运 动 , 当 以 点 A、 N、 C 为 顶 点 的 三 角 形 是 等 腰 三 角 形 时 , 请 直 接 写 出 此时 点

    36、 N的 坐 标 ;(4)若 点 N 在 线 段 BC上 运 动 (不 与 点 B、 C 重 合 ), 过 点 N 作 NM AC, 交 AB 于 点 M, 当 AMN面 积 最 大 时 , 求 此 时 点 N的 坐 标 .解 析 : (1)根 据 待 定 系 数 法 即 可 求 得 ;(2)根 据 抛 物 线 的 解 析 式 求 得 B 的 坐 标 , 然 后 根 据 勾 股 定 理 分 别 求 得 AB 2=20, AC2=80, BC10,然 后 根 据 勾 股 定 理 的 逆 定 理 即 可 证 得 ABC是 直 角 三 角 形 .(3)分 别 以 A、 C 两 点 为 圆 心 , AC

    37、长 为 半 径 画 弧 , 与 x 轴 交 于 三 个 点 , 由 AC的 垂 直 平 分 线 与x轴 交 于 一 个 点 , 即 可 求 得 点 N 的 坐 标 ;(4)设 点 N 的 坐 标 为 (n, 0), 则 BN=n+2, 过 M 点 作 MD x轴 于 点 D, 根 据 三 角 形 相 似 对 应 边成 比 例 求 得 MD=25 (n+2), 然 后 根 据 S AMN=S ABN-S BMN得 出 关 于 n的 二 次 函 数 , 根 据 函 数 解 析 式求 得 即 可 .答 案 : (1) 二 次 函 数 y=ax 2+32 x+c的 图 象 与 y轴 交 于 点 A(0

    38、, 4), 与 x 轴 交 于 点 B、 C, 点C坐 标 为 (8, 0), 464 12 0c a c ,解 得 144ac . 抛 物 线 表 达 式 : y=-14 x 2+32 x+4;(2) ABC是 直 角 三 角 形 .令 y=0, 则 -14 x2+32 x+4=0,解 得 x1=8, x2=-2, 点 B的 坐 标 为 (-2, 0),由 已 知 可 得 ,在 Rt ABO中 AB 2=BO2+AO2=22+42=20,在 Rt AOC中 AC2=AO2+CO2=42+82=80,又 BC=OB+OC=2+8=10, 在 ABC中 AB2+AC2=20+80=102=BC2

    39、 ABC是 直 角 三 角 形 .(3) A(0, 4), C(8, 0), AC= 2 24 8 =4 5, 以 A为 圆 心 , 以 AC长 为 半 径 作 圆 , 交 x 轴 于 N, 此 时 N的 坐 标 为 (-8, 0), 以 C为 圆 心 , 以 AC长 为 半 径 作 圆 , 交 x 轴 于 N, 此 时 N 的 坐 标 为 (8-4 5, 0)或 (8+4 5,0) 作 AC的 垂 直 平 分 线 , 交 x 轴 于 N, 此 时 N的 坐 标 为 (3, 0),综 上 , 若 点 N 在 x 轴 上 运 动 , 当 以 点 A、 N、 C为 顶 点 的 三 角 形 是 等

    40、腰 三 角 形 时 , 点 N 的 坐 标分 别 为 (-8, 0)、 (8-4 5, 0)、 (3, 0)、 (8+4 5, 0).(4)设 点 N 的 坐 标 为 (n, 0), 则 BN=n+2, 过 M 点 作 MD x轴 于 点 D, MD OA, BMD BAO, BM MDBA OA , MN AC BM BNBA BC , MD BNOA BC , OA=4, BC=10, BN=n+2 MD=25 (n+2), S AMN=S ABN-S BMN=12 BN OA-12 BN MD=12 (n+2) 4-12 25 (n+2)2=-15(n-3)2+5, 当 AMN面 积 最 大 时 , N 点 坐 标 为 (3, 0).


    注意事项

    本文(2015年辽宁省丹东市中考真题数学及答案解析.docx)为本站会员(medalangle361)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开