欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2014年福建省泉州市中考真题数学及答案解析.docx

    • 资源ID:1511255       资源大小:231.83KB        全文页数:13页
    • 资源格式: DOCX        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2014年福建省泉州市中考真题数学及答案解析.docx

    1、2014年 福 建 省 泉 州 市 中 考 真 题 数 学一 、 选 择 题 (每 小 题 有 四 个 答 案 , 其 中 有 且 只 有 一 个 答 案 是 正 确 的 , 答 对 的 得 3 分 , 答 错 或不 答 一 律 得 0 分 .)1.(3分 )2014 的 相 反 数 是 ( )A.2014B.-2014C.D.解 析 : 2014的 相 反 数 是 -2014.答 案 : B 2.(3分 )下 列 运 算 正 确 的 是 ( )A.a3+a3=a6B.2(a+1)=2a+1C.(ab)2=a2b2D.a6 a3=a2解 析 : A、 a3+a3=2a3, 故 A选 项 错 误

    2、 ;B、 2(a+1)=2a+2 2a+1, 故 B选 项 错 误 ;C、 (ab) 2=a2b2, 故 C选 项 正 确 ;D、 a6 a3=a3 a2, 故 D 选 项 错 误 .答 案 : C.3.(3分 )如 图 的 立 体 图 形 的 左 视 图 可 能 是 ( ) A.B.C. D.解 析 : 此 立 体 图 形 的 左 视 图 是 直 角 三 角 形 ,答 案 : A.点 评 : 本 题 考 查 了 几 何 体 的 三 种 视 图 , 掌 握 定 义 是 关 键 .注 意 所 有 的 看 到 的 棱 都 应 表 现 在4.(3分 )七 边 形 外 角 和 为 ( )A.180B.

    3、360C.900D.1260解 析 : 七 边 形 的 外 角 和 为 360 .答 案 : B. 5.(3分 )正 方 形 的 对 称 轴 的 条 数 为 ( )A.1B.2C.3D.4解 析 : 正 方 形 有 4 条 对 称 轴 .答 案 : D.6.(3分 )分 解 因 式 x 2y-y3结 果 正 确 的 是 ( )A.y(x+y)2B.y(x-y)2C.y(x2-y2)D.y(x+y)(x-y)解 析 : x2y-y3=y(x2-y2)=y(x+y)(x-y).答 案 : D.7.(3分 )在 同 一 平 面 直 角 坐 标 系 中 , 函 数 y=mx+m与 y= (m 0)的

    4、图 象 可 能 是 ( ) A. B.C.D.解 析 : A、 由 函 数 y=mx+m的 图 象 可 知 m 0, 由 函 数 y= 的 图 象 可 知 m 0, 故 A 选 项 正 确 ; B、 由 函 数 y=mx+m的 图 象 可 知 m 0, 由 函 数 y= 的 图 象 可 知 m 0, 相 矛 盾 , 故 B 选 项 错 误 ;C、 由 函 数 y=mx+m的 图 象 y随 x的 增 大 而 减 小 , 则 m 0, 而 该 直 线 与 y 轴 交 于 正 半 轴 , 则 m 0, 相 矛 盾 , 故 C 选 项 错 误 ;D、 由 函 数 y=mx+m的 图 象 y随 x的 增

    5、 大 而 增 大 , 则 m 0, 而 该 直 线 与 y 轴 交 于 负 半 轴 , 则 m 0, 相 矛 盾 , 故 D 选 项 错 误 ;答 案 : A.二 、 填 空 题 (每 小 题 4 分 , 共 40分 )8.(4分 )2014 年 6 月 , 阿 里 巴 巴 注 资 1200000000 元 入 股 广 州 恒 大 , 将 数 据 1200000000 用 科学 记 数 法 表 示 为 .解 析 : 将 1200000000用 科 学 记 数 法 表 示 为 : 1.2 10 9.答 案 : 1.2 109.9.(4分 )如 图 , 直 线 AB 与 CD相 交 于 点 O,

    6、AOD=50 , 则 BOC= .解 析 : BOC与 AOD 是 对 顶 角 , BOC= AOD=50 ,答 案 : 50.10.(4分 )计 算 : + = . 解 析 : 原 式 = =1,答 案 : 1.11.(4分 )方 程 组 的 解 是 .解 析 : , + 得 : 3x=6, 即 x=2, 将 x=2代 入 得 : y=2, 则 方 程 组 的 解 为 .答 案 : . 12.(4分 )在 综 合 实 践 课 上 , 六 名 同 学 的 作 品 数 量 (单 位 : 件 )分 别 为 : 3、 5、 2、 5、 5、 7,则 这 组 数 据 的 众 数 为 件 .解 析 :

    7、5出 现 了 3次 , 出 现 的 次 数 最 多 , 这 组 数 据 的 众 数 为 5;答 案 : 5.12.(4分 )在 综 合 实 践 课 上 , 六 名 同 学 的 作 品 数 量 (单 位 : 件 )分 别 为 : 3、 5、 2、 5、 5、 7,解 析 : 5出 现 了 3次 , 出 现 的 次 数 最 多 , 这 组 数 据 的 众 数 为 5;答 案 : 5.13.(4分 )如 图 , 直 线 a b, 直 线 c 与 直 线 a, b都 相 交 , 1=65 , 则 2= . 解 析 : 直 线 a b, 1= 2, 1=65 , 2=65 ,答 案 : 65.14.(4

    8、分 )如 图 , Rt ABC中 , ACB=90 , D为 斜 边 AB的 中 点 , AB=10cm, 则 CD的 长 为 cm.解 析 : ACB=90 , D为 斜 边 AB的 中 点 , CD= AB= 10=5cm. 答 案 : 5. 15.(4分 )如 图 , 在 ABC中 , C=40 , CA=CB, 则 ABC的 外 角 ABD= .解 析 : CA=CB, A= ABC, C=40 , A=70 ABD= A+ C=110 .答 案 : 110.16.(4分 )已 知 : m、 n 为 两 个 连 续 的 整 数 , 且 m n, 则 m+n= .解 析 : 9 11 1

    9、6, 3 4, m=3, n=4, m+n=3+4=7.答 案 : 7. 17.(4分 )如 图 , 有 一 直 径 是 米 的 圆 形 铁 皮 , 现 从 中 剪 出 一 个 圆 周 角 是 90 的 最 大 扇 形ABC, 则 :(1)AB的 长 为 米 ;(2)用 该 扇 形 铁 皮 围 成 一 个 圆 锥 , 所 得 圆 锥 的 底 面 圆 的 半 径 为 米 .解 析 : (1) BAC=90 , BC为 O 的 直 径 , 即 BC= , AB= BC=1; (2)设 所 得 圆 锥 的 底 面 圆 的 半 径 为 r, 根 据 题 意 得 2 r= , 解 得 r= .答 案 :

    10、 1, .三 、 解 答 题 (共 89分 )18.(9分 )计 算 : (2 -1) 0+|-6|-8 4-1+ .解 析 : 本 题 涉 及 零 指 数 幂 、 绝 对 值 、 负 指 数 幂 、 二 次 根 式 化 简 四 个 考 点 .针 对 每 个 考 点 分 别进 行 计 算 , 然 后 根 据 实 数 的 运 算 法 则 求 得 计 算 结 果 . 答 案 : 原 式 =1+6-8 +4=1+6-2+4=9.19.(9分 )先 化 简 , 再 求 值 : (a+2)2+a(a-4), 其 中 a= .解 析 : 首 先 利 用 完 全 平 方 公 式 和 整 式 的 乘 法 计

    11、算 , 再 进 一 步 合 并 得 出 结 果 , 最 后 代 入 求 得 数值 即 可 .答 案 : (a+2)2+a(a-4)=a2+4a+4+a2-4a=2a2+4,当 a= 时 , 原 式 =2 ( ) 2+4=10.20.(9分 )已 知 : 如 图 , 在 矩 形 ABCD中 , 点 E, F 分 别 在 AB, CD边 上 , BE=DF, 连 接 CE, AF.求 证 : AF=CE.解 析 : 根 据 矩 形 的 性 质 得 出 DC AB, DC=AB, 求 出 CF=AE, CF AE, 根 据 平 行 四 边 形 的 判 定得 出 四 边 形 AFCE 是 平 行 四

    12、边 形 , 即 可 得 出 答 案 . 答 案 : 四 边 形 ABCD 是 矩 形 , DC AB, DC=AB, CF AE, DF=BE, CF=AE, 四 边 形 AFCE是 平 行 四 边 形 , AF=CE.21.(9分 )在 一 个 不 透 明 的 箱 子 里 , 装 有 红 、 白 、 黑 各 一 个 球 , 它 们 除 了 颜 色 之 外 没 有 其 他区 别 .(1)随 机 地 从 箱 子 里 取 出 1 个 球 , 则 取 出 红 球 的 概 率 是 多 少 ?(2)随 机 地 从 箱 子 里 取 出 1 个 球 , 放 回 搅 匀 再 取 第 二 个 球 , 请 你 用

    13、 画 树 状 图 或 列 表 的 方 法 表示 所 有 等 可 能 的 结 果 , 并 求 两 次 取 出 相 同 颜 色 球 的 概 率 .解 析 : (1)由 在 一 个 不 透 明 的 箱 子 里 , 装 有 红 、 白 、 黑 各 一 个 球 , 它 们 除 了 颜 色 之 外 没 有 其他 区 别 , 直 接 利 用 概 率 公 式 求 解 即 可 求 得 答 案 ;(2)首 先 根 据 题 意 画 出 树 状 图 , 然 后 由 树 状 图 求 得 所 有 等 可 能 的 结 果 与 两 次 取 出 相 同 颜 色 球的 情 况 , 再 利 用 概 率 公 式 即 可 求 得 答

    14、案 .答 案 : (1) 在 一 个 不 透 明 的 箱 子 里 , 装 有 红 、 白 、 黑 各 一 个 球 , 它 们 除 了 颜 色 之 外 没 有 其 他 区 别 , 随 机 地 从 箱 子 里 取 出 1个 球 , 则 取 出 红 球 的 概 率 是 : ;(2)画 树 状 图 得 : 共 有 9 种 等 可 能 的 结 果 , 两 次 取 出 相 同 颜 色 球 的 有 3 种 情 况 , 两 次 取 出 相 同 颜 色 球 的 概 率 为 : = . 22.(9分 )如 图 , 已 知 二 次 函 数 y=a(x-h)2+ 的 图 象 经 过 原 点 O(0, 0), A(2,

    15、 0).(1)写 出 该 函 数 图 象 的 对 称 轴 ;(2)若 将 线 段 OA绕 点 O 逆 时 针 旋 转 60 到 OA , 试 判 断 点 A 是 否 为 该 函 数 图 象 的 顶 点 ?解 析 : (1)由 于 抛 物 线 过 点 O(0, 0), A(2, 0), 根 据 抛 物 线 的 对 称 性 得 到 抛 物 线 的 对 称 轴 为直 线 x=1; (2)作 A B x 轴 与 B, 先 根 据 旋 转 的 性 质 得 OA =OA=2, A OA=60 , 再 根 据 含 30 度 的直 角 三 角 形 三 边 的 关 系 得 OB= OA =1, A B= OB=

    16、 , 则 A 点 的 坐 标 为 (1, ), 根据 抛 物 线 的 顶 点 式 可 判 断 点 A 为 抛 物 线 y=- (x-1)2+ 的 顶 点 .答 案 : (1) 二 次 函 数 y=a(x-h)2+ 的 图 象 经 过 原 点 O(0, 0), A(2, 0).解 得 : h=1. 抛 物 线 的 对 称 轴 为 直 线 x=1;(2)点 A 是 该 函 数 图 象 的 顶 点 .理 由 如 下 : 如 图 , 作 A B x轴 于 点 B, 线 段 OA 绕 点 O 逆 时 针 旋 转 60 到 OA , OA =OA=2, A OA=60 ,在 Rt A OB 中 , OA

    17、B=30 , OB= OA =1, A B= OB= , A 点 的 坐 标 为 (1, ), 点 A 为 抛 物 线 y=- (x-1)2+ 的 顶 点 .23.(9分 )课 外 阅 读 是 提 高 学 生 素 养 的 重 要 途 径 .某 校 为 了 了 解 学 生 课 外 阅 读 情 况 , 随 机 抽 查了 50 名 学 生 , 统 计 他 们 平 均 每 天 课 外 阅 读 时 间 (t小 时 ).根 据 t 的 长 短 分 为 A, B, C, D 四类 , 下 面 是 根 据 所 抽 查 的 人 数 绘 制 的 两 幅 不 完 整 的 统 计 图 表 .请 根 据 图 中 提 供

    18、 的 信 息 , 解 答下 面 的 问 题 : (1)求 表 格 中 的 a 的 值 , 并 在 图 中 补 全 条 形 统 计 图 ;(2)该 校 现 有 1300名 学 生 , 请 你 估 计 该 校 共 有 多 少 名 学 生 课 外 阅 读 时 间 不 少 于 1小 时 ?解 析 : (1)用 抽 查 的 学 生 的 总 人 数 减 去 A, B, C 三 类 的 人 数 即 为 D 类 的 人 数 也 就 是 a 的 值 ,并 补 全 统 计 图 ;(2)先 求 出 课 外 阅 读 时 间 不 少 于 1 小 时 的 学 生 占 的 比 例 , 再 乘 以 1300 即 可 .答 案

    19、 : (1)50-10-20-15=5(名 ), 故 a 的 值 为 5, 条 形 统 计 图 如 下 : (2)1300 =520(名 ),答 : 估 计 该 校 共 有 520 名 学 生 课 外 阅 读 时 间 不 少 于 1 小 时 .24.(9分 )某 学 校 开 展 “ 青 少 年 科 技 创 新 比 赛 ” 活 动 , “ 喜 洋 洋 ” 代 表 队 设 计 了 一 个 遥 控 车沿 直 线 轨 道 AC 做 匀 速 直 线 运 动 的 模 型 .甲 、 乙 两 车 同 时 分 别 从 A, B 两 处 出 发 , 沿 轨 道 到 达C处 , B 在 AC上 , 甲 的 速 度

    20、是 乙 的 速 度 的 1.5倍 , 设 t(分 )后 甲 、 乙 两 遥 控 车 与 B 处 的 距 离分 别 为 d 1, d2, 则 d1, d2与 t 的 函 数 关 系 如 图 , 试 根 据 图 象 解 决 下 列 问 题 : (1)填 空 : 乙 的 速 度 v2= 米 /分 ;(2)写 出 d1与 t 的 函 数 关 系 式 :(3)若 甲 、 乙 两 遥 控 车 的 距 离 超 过 10米 时 信 号 不 会 产 生 相 互 干 扰 , 试 探 求 什 么 时 间 两 遥 控 车的 信 号 不 会 产 生 相 互 干 扰 ?解 析 : (1)根 据 路 程 与 时 间 的 关

    21、 系 , 可 得 答 案 ;(2)根 据 甲 的 速 度 是 乙 的 速 度 的 1.5倍 , 可 得 甲 的 速 度 , 根 据 路 程 与 时 间 的 关 系 , 可 得 a 的值 , 根 据 待 定 系 数 法 , 可 得 答 案 ;(3)根 据 两 车 的 距 离 , 可 得 不 等 式 , 根 据 解 不 等 式 , 可 得 答 案 .答 案 : (1)乙 的 速 度 v 2=120 3=40(米 /分 ),故 答 案 为 : 40;(2)v1=1.5v2=1.5 40=60(米 /分 ), 60 60=1(分 钟 ), a=1, d1= ;(3)d2=40t,当 0 t 1时 ,

    22、d2+d1 10, 即 -60t+60+40t 10, 解 得 0 t 2.5, 0 t 1, 当 0 t 1 时 , 两 遥 控 车 的 信 号 不 会 产 生 相 互 干 扰 ;当 1 t 3时 , d 2-d1 10, 即 40t-(60t-60) 10,当 1 时 , 两 遥 控 车 的 信 号 不 会 产 生 相 互 干 扰综 上 所 述 : 当 0 t 2.5时 , 两 遥 控 车 的 信 号 不 会 产 生 相 互 干 扰 .25.(12分 )如 图 , 在 锐 角 三 角 形 纸 片 ABC中 , AC BC, 点 D, E, F 分 别 在 边 AB, BC, CA上 . (

    23、1)已 知 : DE AC, DF BC. 判 断四 边 形 DECF一 定 是 什 么 形 状 ? 裁 剪当 AC=24cm, BC=20cm, ACB=45 时 , 请 你 探 索 : 如 何 剪 四 边 形 DECF, 能 使 它 的 面 积 最 大 ,并 证 明 你 的 结 论 ;(2)折 叠 请 你 只 用 两 次 折 叠 , 确 定 四 边 形 的 顶 点 D, E, C, F, 使 它 恰 好 为 菱 形 , 并 说 明 你 的 折 法 和理 由 .解 析 : (1) 根 据 有 两 组 对 边 互 相 平 行 的 四 边 形 是 平 行 四 边 形 即 可 求 得 , 根 据

    24、ADF ABC推 出 对 应 边 的 相 似 比 , 然 后 进 行 转 换 , 即 可 得 出 高 h 与 x 之 间 的 函 数 关 系 式 , 根 据 平 行 四 边形 的 面 积 公 式 , 很 容 易 得 出 面 积 S关 于 h 的 二 次 函 数 表 达 式 , 求 出 顶 点 坐 标 , 就 可 得 出 面 积s最 大 时 h的 值 .(2)第 一 步 BC 边 向 AC 边 折 叠 , 使 BC 与 AC重 合 , 得 到 折 痕 交 AB 于 D(CD 为 ACB对 角 线 );第 二 步 C 点 向 AB 边 折 叠 , 使 C 点 与 D点 重 合 , 得 到 折 痕

    25、交 BC边 于 E, 交 AC 边 于 F; 通 过 上述 两 次 折 叠 , 得 到 点 : DECF, 组 成 的 四 边 形 为 菱 形 .答 案 : (1) DE AC, DF BC, 四 边 形 DECF是 平 行 四 边 形 . 作 AG BC, 交 BC于 G, 交 DF 于 H, ACB=45 , AC=24cm AG= =12 , 设 DF=EC=x, 平 行 四 边 形 的 高 为 h, 则 AH=12 h, DF BC, = , BC=20cm, 即 : = x= 20, S=xh=x 20=20h- h2. - =- =6 , AH=12 , AF=FC, 在 AC中

    26、点 处 剪 四 边 形 DECF, 能 使 它 的 面 积 最 大 .(2) BC边 向 AC边 折 叠 , 使 BC与 AC 重 合 , 得 到 折 痕 交 AB于 D(CD为 ACB对 角 线 ); C 点 向 AB边 折 叠 , 使 C点 与 D 点 重 合 , 得 到 折 痕 交 BC边 于 E, 交 AC边 于 F; 通 过 上 述 两 次 折 叠 , 得 到 点 : DECF, 组 成 的 四 边 形 为 菱 形 .理 由 : CD和 EF是 四 边 形 DECF对 角 线 , 而 CD和 EF互 相 垂 直 且 平 分 , 四 边 形 DECF 是 菱形 .26.(14分 )如

    27、图 , 直 线 y=-x+3与 x, y 轴 分 别 交 于 点 A, B, 与 反 比 例 函 数 的 图 象 交 于 点 P(2,1). (1)求 该 反 比 例 函 数 的 关 系 式 ;(2)设 PC y 轴 于 点 C, 点 A 关 于 y轴 的 对 称 点 为 A ; 求 A BC的 周 长 和 sin BA C的 值 ; 对 大 于 1的 常 数 m, 求 x 轴 上 的 点 M的 坐 标 , 使 得 sin BMC= .解 析 : (1)设 反 比 例 函 数 的 关 系 式 y= , 然 后 把 点 P 的 坐 标 (2, 1)代 入 即 可 .(2) 先 求 出 直 线 y

    28、=-x+3与 x、 y 轴 交 点 坐 标 , 然 后 运 用 勾 股 定 理 即 可 求 出 A BC 的 周 长 ;过 点 C作 CD AB, 垂 足 为 D, 运 用 面 积 法 可 以 求 出 CD长 , 从 而 求 出 sin BA C的 值 . 由 于 BC=2, sin BMC= , 因 此 点 M在 以 BC为 弦 , 半 径 为 m的 E 上 , 因 而 点 M 应 是 E与 x 轴 的 交 点 .然 后 对 E 与 x 轴 的 位 置 关 系 进 行 讨 论 , 只 需 运 用 矩 形 的 判 定 与 性 质 、 勾 股定 理 等 知 识 就 可 求 出 满 足 要 求 的

    29、 点 M 的 坐 标 . 答 案 : (1)设 反 比 例 函 数 的 关 系 式 y= . 点 P(2, 1)在 反 比 例 函 数 y= 的 图 象 上 , k=2 1=2.即 反 比 例 函 数 的 关 系 式 y= .(2) 过 点 C 作 CD AB, 垂 足 为 D, 如 图 1 所 示 . 当 x=0时 , y=0+3=3, 则 点 B 的 坐 标 为 (0, 3).OB=3.当 y=0时 , 0=-x+3, 解 得 x=3, 则 点 A的 坐 标 为 (3, 0), OA=3. 点 A关 于 y 轴 的 对 称 点 为 A , OA =OA=3. PC y 轴 , 点 P(2,

    30、 1), OC=1, PC=2. BC=2. AOB=90 , OA =OB=3, OC=1, A B=3 , A C= . A BC的 周 长 为 3 + +2. S ABC= BC A O= A B CD, BC A O=A B CD. 2 3=3 CD. CD= . CD A B, sin BA C= = = . A BC的 周 长 为 3 + +2, sin BA C的 值 为 . 当 1 m 2 时 , 作 经 过 点 B、 C 且 半 径 为 m 的 E, 连 接 CE 并 延 长 , 交 E于 点 P, 连 接BP, 过 点 E作 EG OB, 垂 足 为 G, 过 点 E 作

    31、EH x 轴 , 垂 足 为 H, 如 图 2 所 示 . CP 是 E的 直 径 , PBC=90 . sin BPC= = = . sin BMC= , BMC= BPC. 点 M 在 E上 . 点 M在 x轴 上 点 M 是 E与 x轴 的 交 点 . EG BC, BG=GC=1. OG=2. EHO= GOH= OGE=90 , 四 边 形 OGEH是 矩 形 . EH=OG=2, EG=OH. 1 m 2, EH EC. E与 x轴 相 离 . x 轴 上 不 存 在 点 M, 使 得 sin BMC= . 当 m=2时 , EH=EC. E 与 x 轴 相 切 . .切 点 在

    32、x 轴 的 正 半 轴 上 时 , 如 图 2 所 示 . 点 M与 点 H 重 合 . EG OG, GC=1, EC=m, EG= = . OM=OH=EG= . 点 M的 坐 标 为 ( , 0). .切 点 在 x 轴 的 负 半 轴 上 时 , 同 理 可 得 : 点 M 的 坐 标 为 (- , 0). 当 m 2 时 , EH EC. E与 x轴 相 交 . .交 点 在 x 轴 的 正 半 轴 上 时 ,设 交 点 为 M、 M , 连 接 EM, 如 图 2 所 示 . EHM=90 , EM=m, EH=2, MH= = = . EH MM , MH=M H. M H .

    33、EGC=90 , GC=1, EC=m, EG= = = . OH=EG= . OM=OH-MH= - , OM =OH+HM = + , M( - , 0)、 M ( + , 0). .交 点 在 x 轴 的 负 半 轴 上 时 , 同 理 可 得 : M(- + , 0)、 M (- - , 0).综 上 所 述 : 当 1 m 2 时 , 满 足 要 求 的 点 M不 存 在 ;当 m=2时 , 满 足 要 求 的 点 M 的 坐 标 为 ( , 0)和 (- , 0);当 m 2 时 , 满 足 要 求 的 点 M 的 坐 标 为 ( - , 0)、 ( + ,0)、 (- + , 0)、 (- - , 0).


    注意事项

    本文(2014年福建省泉州市中考真题数学及答案解析.docx)为本站会员(fuellot230)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开