欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    【考研类试卷】研究生入学考试(电磁场与电磁波)-试卷11及答案解析.doc

    • 资源ID:1404210       资源大小:200KB        全文页数:7页
    • 资源格式: DOC        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    【考研类试卷】研究生入学考试(电磁场与电磁波)-试卷11及答案解析.doc

    1、研究生入学考试(电磁场与电磁波)-试卷 11 及答案解析(总分:60.00,做题时间:90 分钟)一、证明题(总题数:6,分数:12.00)1.证明矢量场 F=(ycosxy)e x +(xcosxy)e y +sinze z 为有势场。(分数:2.00)_2.证明:如果 A.B=A.C 和 AB=AC,则 B=C。(分数:2.00)_3.证明:(1) .R=3,(2) R=0,(3) (分数:2.00)_4.证明 (分数:2.00)_5.利用直角坐标,证明 (分数:2.00)_6.证明(Cr)=2C,式中 C 为常矢量,r 为位置矢量。(分数:2.00)_二、计算题(总题数:24,分数:48

    2、.00)7.给定两个矢量 A=2e x +3e y -4e z 和 B=4e x 一 5e y +6e z ,求它们之间的夹角和 A 在 B 上的分量。(分数:2.00)_8.已知 A=3ye x +2z 2 e y +xye z ,B=x 2 e x -4e z ,求 (分数:2.00)_9.求标量函数 =x 2 yz 的梯度及 在一个指定方向的方向导数。此方向由单位矢量 (分数:2.00)_10.已知矢量 E=e x (x 2 +axz)+e y (xy 2 +by)+e z (zz 2 +czx-2xyz),试确定常数 a、b、C,使 E 为无源场。(分数:2.00)_11.设 S 为上

    3、半球面 x 2 +y 2 +z 2 =a 2 (z0),求矢量场 r=xe x +ye y +ze z 向上穿过 S 的通量 提示:注意 S 的法矢量 n 与 r 同指向。(分数:2.00)_12.设 a 为常矢量,r=xe x +ye y +ze z ,r=|r|,求: (分数:2.00)_13.求 F=x(zy)e x +y(xz)e y +z(yx)e x 在点 M(1,2,3)处沿 e n = (分数:2.00)_14.求曲线 r(t)=te x +t 2 e y +t 3 e z 上这样的点,使该点的切线平行于平面 x+2y+z=4。(分数:2.00)_15.如果给定一个未知矢量与一

    4、个已知矢量的标量积和矢量积,那么便可以确定该未知量。设 A 为一已知矢量,p=A.X 而 P=AX,p 和 P 已知,试求 X。(分数:2.00)_16.给定三个矢量 A、B 和 C 如下: A=e x +2e y 一 3e z B=一 4e y +e z C=5e x 一 2e z 求:(1)e A ;(2)|AB|;(3)A.B;(4) AB ;(5)AC;(6)A.(BC)和(AB).C;(7)(AB)C 和 A(BC)。(分数:2.00)_17.求 P(一 3,1,4)点到 P(2,-2,3)点的距离矢量 R 及 R 的方向。(分数:2.00)_18.求标量函数 =x 2 yz 的梯度

    5、及 在一个指定方向的方向导数。此方向由单位矢量 (分数:2.00)_19.三个矢量 A、B、C,A=sincose r +coscose sine ,B=z 2 sine +z 2 cose +2zsine z ,C=(3y 2 -2x)e x +x 2 e y +2ze z 。(1)哪些矢量可以由一个标量函数的梯度表示?哪些矢量可以由一个矢量函数的旋度表示?(2)求出这些矢量的源分布。(分数:2.00)_20.若在标量场 u=u(M)中恒有 (分数:2.00)_21.利用直角坐标,证明 (分数:2.00)_22.求矢量场 A=xyze x -2xy 2 e y +2yz 2 e z 在点 M

    6、(1,1,-2)处沿矢量 n=2e x +3e y +6e z 方向的环流面密度。(分数:2.00)_23.一径向矢量场用 F=f(r)e r 表示,如果 (分数:2.00)_24.给定矢量函数 E x =ye x +xe y ,计算从点 P 1 (2,1,一 1)到 P 2 (8,2,一 1)的线积分E.dl。(1)沿抛物线 x=2y 2 ;(2)沿连接该两点的直线,这个 E 是保守场吗?(分数:2.00)_25.已知 R=(x-x)e x +(y-y)e y +(z-z)e z ,R=|R|。证明:(1) 表示对 x,y 和 z 的运算, (分数:2.00)_26.已知标量函数 u=x 2

    7、 +2y 2 +3z 2 一 2y 一 6z。(1)求 (2)在哪些点上 (分数:2.00)_27.已知 R=(x-x)e x +(yy)e y +(z-z)e z ,R=|R|。求矢量 (分数:2.00)_28.已知圆柱坐标系中某点的位置为 (分数:2.00)_29.已知直角坐标系中的矢量 A=ae x +be y +ce z ,式中 a、b、c 均为常数,A 是常矢量吗?试求该矢量在圆柱坐标系及球坐标系中的表达式。(分数:2.00)_30.已知圆柱坐标系中的矢量 A=ae +be +ce z ,式中 a、b、c 均为常数,A 是常矢量吗?试求.A、A 以及 A 在相应的直角坐标系及球坐标系

    8、中的表达式。(分数:2.00)_研究生入学考试(电磁场与电磁波)-试卷 11 答案解析(总分:60.00,做题时间:90 分钟)一、证明题(总题数:6,分数:12.00)1.证明矢量场 F=(ycosxy)e x +(xcosxy)e y +sinze z 为有势场。(分数:2.00)_正确答案:(正确答案:“有势场” “无旋场” “保守场”。 )解析:2.证明:如果 A.B=A.C 和 AB=AC,则 B=C。(分数:2.00)_正确答案:(正确答案:由 AB=AC,则有 A(AB)=A(AC),即 A(A.B)一 B(A.A)=A(A.C)一 C(A.A) 由于 A.B=A.C,即 B=C

    9、 证毕)解析:3.证明:(1) .R=3,(2) R=0,(3) (分数:2.00)_正确答案:(正确答案: )解析:4.证明 (分数:2.00)_正确答案:(正确答案:根据算子的微分运算性质,有 由 A.(BC)=C.(AB),可得: )解析:5.利用直角坐标,证明 (分数:2.00)_正确答案:(正确答案:在直角坐标系中 )解析:6.证明(Cr)=2C,式中 C 为常矢量,r 为位置矢量。(分数:2.00)_正确答案:(正确答案:因为 C 为常矢量,r 为位置矢量, 所以,设 C=Ce x ,r=xe x +ye y +ze z )解析:二、计算题(总题数:24,分数:48.00)7.给定

    10、两个矢量 A=2e x +3e y -4e z 和 B=4e x 一 5e y +6e z ,求它们之间的夹角和 A 在 B 上的分量。(分数:2.00)_正确答案:(正确答案: |A.B|=(2e x +3e y -4e z ).(4e x -5e y +6e z )=-31 故 A 与 B 之间的夹角为 A 在 B 上的分量为 )解析:8.已知 A=3ye x +2z 2 e y +xye z ,B=x 2 e x -4e z ,求 (分数:2.00)_正确答案:(正确答案: =-8z 2 e x +(12y+x 3 y)e y -2x 2 z 2 e z )解析:9.求标量函数 =x 2

    11、 yz 的梯度及 在一个指定方向的方向导数。此方向由单位矢量 (分数:2.00)_正确答案:(正确答案: 点(2,3,1)处沿 e l 的方向导数值为 )解析:10.已知矢量 E=e x (x 2 +axz)+e y (xy 2 +by)+e z (zz 2 +czx-2xyz),试确定常数 a、b、C,使 E 为无源场。(分数:2.00)_正确答案:(正确答案:由 )解析:11.设 S 为上半球面 x 2 +y 2 +z 2 =a 2 (z0),求矢量场 r=xe x +ye y +ze z 向上穿过 S 的通量 提示:注意 S 的法矢量 n 与 r 同指向。(分数:2.00)_正确答案:(

    12、正确答案:= S r.dS= S r.ndS= S |r|dS = )解析:12.设 a 为常矢量,r=xe x +ye y +ze z ,r=|r|,求: (分数:2.00)_正确答案:(正确答案:根据公式 其中 C 为常矢量,f 为标量函数。 )解析:13.求 F=x(zy)e x +y(xz)e y +z(yx)e x 在点 M(1,2,3)处沿 e n = (分数:2.00)_正确答案:(正确答案:由题意,环量密度 F=x(zy)e x +y(xz)e y +z(yx)e z 则 =e x (zy)+e y (xz)+e z (yx) 故 M 点处环量密度 )解析:14.求曲线 r(t

    13、)=te x +t 2 e y +t 3 e z 上这样的点,使该点的切线平行于平面 x+2y+z=4。(分数:2.00)_正确答案:(正确答案:曲线某点处的切线方程是 平面的法线方向 e n =e x +2e y +e z 若过某点的切线平行于平面,则此点处切线与平面的法线垂直。于是 (e x +2te y +3t 2 e z ).(e x +2e y +e z )=1+4t+3t 2 =0 解得 t=一 1 或 从而得所求点为(一 1,1,一 1)和 )解析:15.如果给定一个未知矢量与一个已知矢量的标量积和矢量积,那么便可以确定该未知量。设 A 为一已知矢量,p=A.X 而 P=AX,p

    14、 和 P 已知,试求 X。(分数:2.00)_正确答案:(正确答案:由 P=AX,有 AP=A(AX)=(A.X)A 一(A.A)X=pA 一(A.A)X 故得 )解析:16.给定三个矢量 A、B 和 C 如下: A=e x +2e y 一 3e z B=一 4e y +e z C=5e x 一 2e z 求:(1)e A ;(2)|AB|;(3)A.B;(4) AB ;(5)AC;(6)A.(BC)和(AB).C;(7)(AB)C 和 A(BC)。(分数:2.00)_正确答案:(正确答案:(1) (2)AB=e x +6e y -4e z ,|AB|= (3)A.B=一 83=一 11 (5

    15、)AC= =-4e x -15e y -10e z +2e y =一 4e x 一 13e y -10e z (6)A.(BC) A.(BC)=8+10 一 60=一 42 AB= =2e x -4e z 一 12e x 一 e y =一 10e x 一 e y -4e z (AB).C=一 50+8=一 42 (7)(AB)C= =-2e x -20e y +5e z 一 20e y =2e x -40e y +5e z A(BC)= )解析:17.求 P(一 3,1,4)点到 P(2,-2,3)点的距离矢量 R 及 R 的方向。(分数:2.00)_正确答案:(正确答案:矢量 P为 A=一

    16、3e x +e y +4e z ;矢量 P 为 A=2e x 一 2e y +3e z 则距离矢量 R 为: R=A-A“=5e x -3e y -e z )解析:18.求标量函数 =x 2 yz 的梯度及 在一个指定方向的方向导数。此方向由单位矢量 (分数:2.00)_正确答案:(正确答案: =2xyze x +x 2 ze y +x 2 ye z 在指定方向的方向导数 )解析:19.三个矢量 A、B、C,A=sincose r +coscose sine ,B=z 2 sine +z 2 cose +2zsine z ,C=(3y 2 -2x)e x +x 2 e y +2ze z 。(1

    17、)哪些矢量可以由一个标量函数的梯度表示?哪些矢量可以由一个矢量函数的旋度表示?(2)求出这些矢量的源分布。(分数:2.00)_正确答案:(正确答案:(1)证明:A=sincose r +coscose -sine 故矢量既可用标量函数的梯度表示,又可用矢量函数的旋度来表示。 A=0 则 A 可由一个标量函数的梯度表示; .A=0 则 A 可由一个矢量函数的旋度表示。 圆柱坐标系中 B=z 2 sine p +z 2 cose +2zsine z 故矢量 B 可用一个标量函数的梯度表示。 直角坐标系中: C=(3y 2 一 2x)e x +x 2 e y +2ze z 故 C 可以由一个矢量函数

    18、的旋度表示。 (2)这些矢量的源分布为 )解析:20.若在标量场 u=u(M)中恒有 (分数:2.00)_正确答案:(正确答案:标量场的梯度为 如果在标量场 u=u(M)中恒有 =0,则 )解析:21.利用直角坐标,证明 (分数:2.00)_正确答案:(正确答案:在直角坐标系中 )解析:22.求矢量场 A=xyze x -2xy 2 e y +2yz 2 e z 在点 M(1,1,-2)处沿矢量 n=2e x +3e y +6e z 方向的环流面密度。(分数:2.00)_正确答案:(正确答案:矢量场 A 沿方向 e n 的环流面密度 rot n 等于 rotA 在该方向上的投影 rot n A

    19、=e n .rotA rotA= =2z 2 e x +xye y 一(2y 2 +xz)e z 则沿矢量 n 的环流面密度为:n 方向的单位矢量 )解析:23.一径向矢量场用 F=f(r)e r 表示,如果 (分数:2.00)_正确答案:(正确答案:在圆柱坐标系中 在球坐标系中,由 )解析:24.给定矢量函数 E x =ye x +xe y ,计算从点 P 1 (2,1,一 1)到 P 2 (8,2,一 1)的线积分E.dl。(1)沿抛物线 x=2y 2 ;(2)沿连接该两点的直线,这个 E 是保守场吗?(分数:2.00)_正确答案:(正确答案:(1) c E.dl= c (ye x +xe

    20、 y ).dl= c (ydx+xdy) = 1 2 yd(2y 2 )+2y 2 dy= 1 2 6y 2 dy=14 (2)连接点 P 1 (2,1,-1)到 P 2 (8,2,-1)的直线方程为 )解析:25.已知 R=(x-x)e x +(y-y)e y +(z-z)e z ,R=|R|。证明:(1) 表示对 x,y 和 z 的运算, (分数:2.00)_正确答案:(正确答案: )解析:26.已知标量函数 u=x 2 +2y 2 +3z 2 一 2y 一 6z。(1)求 (2)在哪些点上 (分数:2.00)_正确答案:(正确答案:(1) =2xe x +(4y-2)e y +(6z 一

    21、 6)e z (2) 时,三个分量分别为 0 得 x=0,y=05,z=1 )解析:27.已知 R=(x-x)e x +(yy)e y +(z-z)e z ,R=|R|。求矢量 (分数:2.00)_正确答案:(正确答案:由 则 )解析:28.已知圆柱坐标系中某点的位置为 (分数:2.00)_正确答案:(正确答案:(1)设该点在直角坐标系中的位置为(x,y,z),则由直角坐标系和圆柱坐标系的关系得: 该点在直角坐标系中的位置为 (2)在球坐标系中 )解析:29.已知直角坐标系中的矢量 A=ae x +be y +ce z ,式中 a、b、c 均为常数,A 是常矢量吗?试求该矢量在圆柱坐标系及球坐

    22、标系中的表达式。(分数:2.00)_正确答案:(正确答案:在直角坐标系中, 即矢量 A=ae x +be y +ce z 的模为常数。 矢量 A=ae x +be y +ce z 中,a、b、c 均为常数,所以 A 是常矢量。 在圆柱坐标系中 在球坐标系中 )解析:30.已知圆柱坐标系中的矢量 A=ae +be +ce z ,式中 a、b、c 均为常数,A 是常矢量吗?试求.A、A 以及 A 在相应的直角坐标系及球坐标系中的表达式。(分数:2.00)_正确答案:(正确答案: 即矢量 A=ae +be +ce z 的模为常数。 将矢量 A=ae +be +ce z 用直角坐标表示,有 A=cose x +sine y +e z =a(cose x +sine y )+b(一 sine x +cose y )+ce z =(acos 一 bsin)e x +(asin+bcos)e y +ce z 由此可见,矢量 A 的方向随 变化,故矢量 A 不是常矢量。 由直角坐标系和圆柱坐标系坐标变量之间的转换关系,可求得: 又根据矢量在直角坐标与圆柱坐标系中的变换关系为 把上面结果代入,可求得 即在圆柱坐标系下的表达式为 由直角坐标系和球坐标系的变换关系,可求得: 又根据矢量在直角坐标与球坐标系中的变换关系为 把上面结果代入,可求得 即在球坐标系下的表达式为 )解析:


    注意事项

    本文(【考研类试卷】研究生入学考试(电磁场与电磁波)-试卷11及答案解析.doc)为本站会员(bonesoil321)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开