欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    【考研类试卷】考研数学二(函数、极限、连续)历年真题试卷汇编3及答案解析.doc

    • 资源ID:1396155       资源大小:295.50KB        全文页数:11页
    • 资源格式: DOC        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    【考研类试卷】考研数学二(函数、极限、连续)历年真题试卷汇编3及答案解析.doc

    1、考研数学二(函数、极限、连续)历年真题试卷汇编 3 及答案解析(总分:74.00,做题时间:90 分钟)一、选择题(总题数:15,分数:30.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.(2003 年)设a n ,b n ,C n 均为非负数列,且 (分数:2.00)A.a n b n 对任意 n 成立B.b n c n 对任意 n 成立C.极限 D.极限 3.(2005 年)设函数 f() (分数:2.00)A.0,1 都是 f()的第一类间断点B.0,1 都是 f()的第二类间断点C.0 是 f()的第一类间断点,1 是 f()的第二类间断点

    2、D.0 是 f()的第二类间断点,1 是 f()的第一类间断点4.(2007 年)当 0 + 时,与 (分数:2.00)A.1B.C.D.1cos5.(2007 年)函数 f() (分数:2.00)A.0B.1C.D.6.(2008 年)设函数 f()在(一,)内单调有界, n 为数列,下列命题正确的是 【 】(分数:2.00)A.若 n 收敛,则f( n )收敛B.若 n 单调,则f( n )收敛C.若f( n )收敛,则 n 收敛D.若f( n )单调,则 n 收敛7.(2008 年)设函数 f() (分数:2.00)A.1 个可去间断点,1 个跳跃间断点B.1 个可去间断点,1 个无穷间

    3、断点C.2 个跳跃间断点D.2 个无穷间断点8.(2009 年)当 0 时,f()sina 与 g() 2 ln(1b)是等价无穷小,则 【 】(分数:2.00)A.a1,bB.a1,bC.a1,bD.a1,b9.(2009 年)函数 f() (分数:2.00)A.1B.2C.3D.无穷多个10.(2010 年)函数 f() (分数:2.00)A.0B.1C.2D.311.(2011 年)已知当 0 时,函数 f()3sinsin3 与 c k 是等价无穷小,则 【 】(分数:2.00)A.k1,c4B.k1,c4C.k3,c4D.k3,c412.(2012 年)设 a n 0(n1,2,),

    4、S n a 1 a 2 a n ,则数列S n 有界是数列a n 收敛的 【 】(分数:2.00)A.充分必要条件B.充分非必要条件C.必要非充分条件D.既非充分条件也非必要条件13.(2013 年)设 cos1sin(),其中() (分数:2.00)A.比 高阶的无穷小B.比 低阶的无穷小C.与 同阶但不等价的无穷小D.与 等价的无穷小14.(2014 年)(1)当 0 + 时,若 ln a (12), (分数:2.00)A.(2,)B.(1,2)C.(D.(0,15.(2015 年)函数 f() (分数:2.00)A.连续B.有可去间断点C.有跳跃间断点D.有无穷间断点二、填空题(总题数:

    5、10,分数:20.00)16.(1997 年)已知 f() (分数:2.00)填空项 1:_17.(2001 年) (分数:2.00)填空项 1:_18.(2002 年)设函数 f() (分数:2.00)填空项 1:_19.(2003 年)若 0 时, (分数:2.00)填空项 1:_20.(2004 年)设 f() (分数:2.00)填空项 1:_21.(2005 年)当 0 时,a()k 2 与 () (分数:2.00)填空项 1:_22.(2007 年) (分数:2.00)填空项 1:_23.(2008 年)已知函数 f()连续,且 (分数:2.00)填空项 1:_24.(2011 年)

    6、 (分数:2.00)填空项 1:_25.(2013 年) (分数:2.00)填空项 1:_三、解答题(总题数:12,分数:24.00)26.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_27.(2008 年)求极限 (分数:2.00)_28.(2009 年)求极限 (分数:2.00)_29.(2011 年)已知函数 F() 设 F()lim (分数:2.00)_30.(2011 年) ()证明:对任意的正整数 n,都有 成立 ()设 a n 1 (分数:2.00)_31.(2012 年)已知函数 f() ,记 a (分数:2.00)_32.(2012 年)()证明方程 n

    7、n-1 1(n 为大于 1 的整数)在区间( ,1)内有且仅有一个实根; ()记()中的实根为 n ,证明 (分数:2.00)_33.(2013 年)当 0 时,1cos.cos2.cos3 与 a n 为等价无穷小,求 n 与 a 的值(分数:2.00)_34.(2013 年)设函数 f()ln ()求 f()的最小值; ()设数列 n 满足 ln n 1证明 (分数:2.00)_35.(2014 年)求极限 (分数:2.00)_36.(2014 年)设函数 f() ,0,1定义函数列: f 1 ()f(),f 2 ()f(f 1 (),f n ()f(f n-1 (),记 S n 是由曲线

    8、 yf n (),直线 1 及 轴所围成平面图形的面积,求极限 (分数:2.00)_37.(2015 年)设函数 f()aln(1)bsin,g()k 3 若 f()与 g()在 0 时是等价无穷小,求 a,b,k 的值(分数:2.00)_考研数学二(函数、极限、连续)历年真题试卷汇编 3 答案解析(总分:74.00,做题时间:90 分钟)一、选择题(总题数:15,分数:30.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.(2003 年)设a n ,b n ,C n 均为非负数列,且 (分数:2.00)A.a n b n 对任意 n 成立B.

    9、b n c n 对任意 n 成立C.极限 D.极限 解析:解析:由于 b n 10, c n 则 b n c n 即极限 3.(2005 年)设函数 f() (分数:2.00)A.0,1 都是 f()的第一类间断点B.0,1 都是 f()的第二类间断点C.0 是 f()的第一类间断点,1 是 f()的第二类间断点D.0 是 f()的第二类间断点,1 是 f()的第一类间断点 解析:解析:显然 0 和 1 是 f()的间断点,又 ,则 0 是 f()的第二类间断点;4.(2007 年)当 0 + 时,与 (分数:2.00)A.1B. C.D.1cos解析:解析:5.(2007 年)函数 f()

    10、(分数:2.00)A.0 B.1C.D.解析:解析:6.(2008 年)设函数 f()在(一,)内单调有界, n 为数列,下列命题正确的是 【 】(分数:2.00)A.若 n 收敛,则f( n )收敛B.若 n 单调,则f( n )收敛 C.若f( n )收敛,则 n 收敛D.若f( n )单调,则 n 收敛解析:解析:由于 f()在(,)上单调有界,若 n 单调,则f( n )是单调有界数列,故f( n )收敛 事实上 A、C、D 都是错误的若令 n ,显然 0,即 n 收敛,令 f() ,显然 f()在(,)上单调有界,但f( n )不收敛由于 f( n ) ,所以 7.(2008 年)设

    11、函数 f() (分数:2.00)A.1 个可去间断点,1 个跳跃间断点 B.1 个可去间断点,1 个无穷间断点C.2 个跳跃间断点D.2 个无穷间断点解析:解析:显然 f() sin 在 1 和 0 没定义,因此 1 和 0 为间断点,其余点都连续 则 1 为 f()的跳跃间断点8.(2009 年)当 0 时,f()sina 与 g() 2 ln(1b)是等价无穷小,则 【 】(分数:2.00)A.a1,b B.a1,bC.a1,bD.a1,b解析:解析:由于当 0 时,f()sina 与 y() 2 ln(1b)是等价无穷小,则 则 b 9.(2009 年)函数 f() (分数:2.00)A

    12、.1B.2C.3 D.无穷多个解析:解析:当 k(k0,1,2,)时,sin0,则这些点都是 f()的间断点而当0,1 时, 3 0, 10.(2010 年)函数 f() (分数:2.00)A.0B.1 C.2D.3解析:解析:显然 f() 有间断点 0,111.(2011 年)已知当 0 时,函数 f()3sinsin3 与 c k 是等价无穷小,则 【 】(分数:2.00)A.k1,c4B.k1,c4C.k3,c4 D.k3,c4解析:解析: 则 k3,12.(2012 年)设 a n 0(n1,2,),S n a 1 a 2 a n ,则数列S n 有界是数列a n 收敛的 【 】(分数

    13、:2.00)A.充分必要条件B.充分非必要条件 C.必要非充分条件D.既非充分条件也非必要条件解析:解析:由于 a n 0,则数列S n 单调增,若S n 有界,则S n 收敛,设 S n a,则 13.(2013 年)设 cos1sin(),其中() (分数:2.00)A.比 高阶的无穷小B.比 低阶的无穷小C.与 同阶但不等价的无穷小 D.与 等价的无穷小解析:解析:由 cos1sin()知14.(2014 年)(1)当 0 + 时,若 ln a (12), (分数:2.00)A.(2,)B.(1,2) C.(D.(0,解析:解析:由于当 0 + 时 ln 口(12)2, , 由题设可知,

    14、1,且 15.(2015 年)函数 f() (分数:2.00)A.连续B.有可去间断点 C.有跳跃间断点D.有无穷间断点解析:解析:由 f() 知,f(0)无意义,且 当 0 时,f() 二、填空题(总题数:10,分数:20.00)16.(1997 年)已知 f() (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:由于17.(2001 年) (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:将分子有理化,分母分解因式得18.(2002 年)设函数 f() (分数:2.00)填空项 1:_ (正确答案:正确答案:2)解析:解析:由于当 0 时 1e

    15、(tan)(),arcsin ,则 19.(2003 年)若 0 时, (分数:2.00)填空项 1:_ (正确答案:正确答案:4)解析:解析:由于当 0 时 (1) 1,则当0 时 1 a 2 ,从而 由题意知 20.(2004 年)设 f() (分数:2.00)填空项 1:_ (正确答案:正确答案:0)解析:解析:21.(2005 年)当 0 时,a()k 2 与 () (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析: 则 k22.(2007 年) (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:23.(2008 年)已知函数 f()连续,且

    16、 (分数:2.00)填空项 1:_ (正确答案:正确答案:2)解析:解析:24.(2011 年) (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:25.(2013 年) (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:三、解答题(总题数:12,分数:24.00)26.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_解析:27.(2008 年)求极限 (分数:2.00)_正确答案:(正确答案: )解析:28.(2009 年)求极限 (分数:2.00)_正确答案:(正确答案:由于当 0 时,1cos 2 ,sin,所以 )解析:29

    17、.(2011 年)已知函数 F() 设 F()lim (分数:2.00)_正确答案:(正确答案: 由题意 )解析:30.(2011 年) ()证明:对任意的正整数 n,都有 成立 ()设 a n 1 (分数:2.00)_正确答案:(正确答案:()根据拉格朗日中值定理,存在 (n,n1),使得 ()当 n1 时,由()知 )解析:31.(2012 年)已知函数 f() ,记 a (分数:2.00)_正确答案:(正确答案:()由于 则 a1 () 由于当 0 时,sin )解析:32.(2012 年)()证明方程 n n-1 1(n 为大于 1 的整数)在区间( ,1)内有且仅有一个实根; ()记

    18、()中的实根为 n ,证明 (分数:2.00)_正确答案:(正确答案:()令 f() n n-1 1(n1),则 f()在 ,1上连续,且 ,f(1)n10, 由闭区间上连续函数的介值定理知,方程 f()0 在( ,1)内至少有一个实根 当 ( ,1)时, f()n n-1 (n1) n-2 2110, 故f()在( ,1)内单调增加 综上所述,方程 f()0 在( ,1)内有且仅有一个实根 ()由 n ( ,1)知数列 n 有界,又 n n n n-1 n 1 n n n n-1 n+1 n-1 n+1 1 因为 0,所以 n n n n-1 n n+1 n n+1 n-1 n+1 于是有

    19、n n+1 ,n1,2, 即 n 单调减少 综上所述,数列 n 单调有界,故 n 收敛 记 a n 由于 令 并注意到 n 1 1,则有 解得 a ,即 )解析:33.(2013 年)当 0 时,1cos.cos2.cos3 与 a n 为等价无穷小,求 n 与 a 的值(分数:2.00)_正确答案:(正确答案: 由题设知 )解析:34.(2013 年)设函数 f()ln ()求 f()的最小值; ()设数列 n 满足 ln n 1证明 (分数:2.00)_正确答案:(正确答案:()f() ,令 f()0,解得 f()的唯一驻点 1 又 f(1) 10,故 f(1)1 是唯一极小值,即最小值

    20、()由()的结果知 ln 1,从而有 于是 n n+1 ,即数列 n 单调增加 又由 ln n 1,知 ln n 1,得 n e 从而数列 n 单调增加,且有上界,故 n 存在 记 n a,可知a 1 0 在不等式 ln n 1 两边取极限,得 lna 1 又 lna 1,故 lna 1,可得 a1,即 )解析:35.(2014 年)求极限 (分数:2.00)_正确答案:(正确答案: )解析:36.(2014 年)设函数 f() ,0,1定义函数列: f 1 ()f(),f 2 ()f(f 1 (),f n ()f(f n-1 (),记 S n 是由曲线 yf n (),直线 1 及 轴所围成平面图形的面积,求极限 (分数:2.00)_正确答案:(正确答案: )解析:37.(2015 年)设函数 f()aln(1)bsin,g()k 3 若 f()与 g()在 0 时是等价无穷小,求 a,b,k 的值(分数:2.00)_正确答案:(正确答案: 则 f()(1a)(b ) 2 0( 3 ) 由于当0 时,f()k 3 ,则 )解析:


    注意事项

    本文(【考研类试卷】考研数学二(函数、极限、连续)历年真题试卷汇编3及答案解析.doc)为本站会员(jobexamine331)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开