欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    【考研类试卷】考研数学二-124及答案解析.doc

    • 资源ID:1395465       资源大小:143KB        全文页数:10页
    • 资源格式: DOC        下载积分:2000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要2000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    【考研类试卷】考研数学二-124及答案解析.doc

    1、考研数学二-124 及答案解析(总分:145.00,做题时间:90 分钟)一、选择题(总题数:8,分数:32.00)1.设 A 是 n 阶矩阵,则|A|=0 的充分必要条件为(分数:4.00)A.A 中有一行元素全为 0B.A 中有两行元素对应成比例C.A 中有一行向量是其余行向量的线性组合D.A 中任一行向量是其余行向量的线性组合2.设 f(x,y)连续,且 ,其中 D 是由 x=y2,x=1,y=0 所围成的平面区域,则 f(x,y)为 (A) 2xy (B) 2xy-1 (分数:4.00)A.B.C.D.3.设在(-,+)内不恒为零的函数 f(x), (分数:4.00)A.B.C.D.4

    2、.设曲线 y=y(x)上点 P(0,4)处的切线垂直于直线 x-2y+5=0,且满足微分方程 y“+2y+y=0,则此曲线方程为 (分数:4.00)A.B.C.D.5.设 A 为 3 阶矩阵,且 A0,A 2=0,则线性非齐次方程组 Ax=b 的线性无关解向量的个数为(分数:4.00)A.4B.3C.2D.16. (分数:4.00)A.B.C.D.7.设有由方程组 所确定的函数 u 和 v下列四个结论中错误的是 (分数:4.00)A.B.C.D.8.下列命题正确的是(分数:4.00)A.设当 x0,有 f(x)g(x),则当 x0,有 f(x)g(x)B.设当 x0,有 f(x)g(x),且

    3、f(0)=g(0),则当 x0,有 f(x)g(x)C.设 f(x)在(a,b)内有唯一驻点,则该点必为极值点D.单调函数的导函数必为单调函数二、填空题(总题数:6,分数:24.00)9. (分数:4.00)填空项 1:_10. (分数:4.00)填空项 1:_11.平行于直线 6x+2y+1=0 且与曲线 y=x3+3x2-5 相切的直线方程为_(分数:4.00)填空项 1:_12. (分数:4.00)填空项 1:_13.设三阶常系数线性齐次微分方程具有特解 y1=ex,y 2=2xex,y 3=3e-x,则该方程为_(分数:4.00)填空项 1:_14.设三阶矩阵 A 有特征值 (分数:4

    4、.00)填空项 1:_三、解答题(总题数:9,分数:89.00)15. (分数:10.00)_16. (分数:10.00)_17.设函数 f(x)在(-,0)内可微, (分数:10.00)_18. (分数:10.00)_19.求曲线 y=lnx 在区间(2,6)内的一条切线,使该切线与直线 x=2,x=6 及曲线 y=lnx 所围图形的面积最小(分数:10.00)_20.设 f(x)在0,1上具有二阶连续导数,且 f(0)=f(1)=0,当 x(0,1),f(x)0证明: (分数:10.00)_21.设函数 f(x)处处可导, 试证: (分数:10.00)_(分数:11.00)_若 n 阶矩阵

    5、 A=( 1, 2, n-1, n)的前 n-1 个列向量线性相关,后 n-1 个列向量线性无关,= 1+ 2+ n,证明:1.方程组 AX= 必有无穷多解;(分数:8.00)_考研数学二-124 答案解析(总分:145.00,做题时间:90 分钟)一、选择题(总题数:8,分数:32.00)1.设 A 是 n 阶矩阵,则|A|=0 的充分必要条件为(分数:4.00)A.A 中有一行元素全为 0B.A 中有两行元素对应成比例C.A 中有一行向量是其余行向量的线性组合 D.A 中任一行向量是其余行向量的线性组合解析:分析 |A|=0*r(A)n*A 的行向量线性相关*中有一行向量是其余行向量的线性

    6、组合故选项(C)正确 易知选项(A)、(B)、(D)皆仅为|A|=0 的充分条件,不是必要条件2.设 f(x,y)连续,且 ,其中 D 是由 x=y2,x=1,y=0 所围成的平面区域,则 f(x,y)为 (A) 2xy (B) 2xy-1 (分数:4.00)A.B.C.D. 解析:分析 对*,再代入上式即得 * *3.设在(-,+)内不恒为零的函数 f(x), (分数:4.00)A. B.C.D.解析:分析 3f(x+y)+f(x-y)=2f(2x)+f(2y) 令 x=y,上式就变为 3f(2x)+f(0)=2f(2x)+f(2x) 从而得到 f(0)=0 再令 x=-y,则原题所给等式变

    7、为 3f(0)+f(-2y)=2f(-2y)+f(2y), 即有 f(-2y)=-f(2y),所以 f(x)必为奇函数。4.设曲线 y=y(x)上点 P(0,4)处的切线垂直于直线 x-2y+5=0,且满足微分方程 y“+2y+y=0,则此曲线方程为 (分数:4.00)A.B.C.D. 解析:分析 y“+2y+y=0(二阶常系数线性齐次方程) *y=e-x(C1x+C2)(通解) 由题意知 y(0)=4,y(0)=-2, 于是可得 C2=4,C 1=2 故 y=e-x(2x+4),即 y=2(x+2)e-x5.设 A 为 3 阶矩阵,且 A0,A 2=0,则线性非齐次方程组 Ax=b 的线性无

    8、关解向量的个数为(分数:4.00)A.4B.3 C.2D.1解析:分析 由 A 为 3 阶矩阵,A 2=AA,故 r(A)+r(A)=2r(A)3,*1,于是知 r(A)=1 因此,线性齐次方程组 Ax=0 基础解系中线性无关解向量个数为 n-1=3-1=2,故线性非齐次方程组 Ax=b 的线性无关解向量的个数为 3即选项(B)正确6. (分数:4.00)A.B.C. D.解析:分析 因 * 故*(因若 5,则原极限为零,若 5,则原极限不存在)7.设有由方程组 所确定的函数 u 和 v下列四个结论中错误的是 (分数:4.00)A.B.C.D. 解析:分析 对方程组中方程的两端分别求全微分,得

    9、 * 由此解出 * 故选项(D)是错的8.下列命题正确的是(分数:4.00)A.设当 x0,有 f(x)g(x),则当 x0,有 f(x)g(x)B.设当 x0,有 f(x)g(x),且 f(0)=g(0),则当 x0,有 f(x)g(x) C.设 f(x)在(a,b)内有唯一驻点,则该点必为极值点D.单调函数的导函数必为单调函数解析:分析 (A)的反例:f(x)=cosx,g(x)=sinx,*内,有 f(x)g(x),但 f(x)g(x)不成立 (C)的反例:f(x)=x 3在(-,+)内有唯一驻点,但该点不是极值点 (D)的反例:f(x)=x+sinx 在(-,+)内单调增加,但 f(x

    10、)=1+cosx 就不是单调函数 (B)正确事实上,令 F(x)=f(x)-g(x)(x0),F(x)=f(x)-g(x)0,F(0)=f(0)-g(0)=0,F(x)单调增加,当 x0,有 F(x)F(0)=0,即 f(x)-g(x)0,故有 f(x)g(x)二、填空题(总题数:6,分数:24.00)9. (分数:4.00)填空项 1:_ (正确答案: )解析:分析 * 注:本题考查定积分的定义以及定积分的基本运算方法10. (分数:4.00)填空项 1:_ (正确答案: )解析:分析 方法一 * 方法二 *11.平行于直线 6x+2y+1=0 且与曲线 y=x3+3x2-5 相切的直线方程

    11、为_(分数:4.00)填空项 1:_ (正确答案:3x+y+6=0)解析:分析 解决本题的关键在于求出曲线 y=x3+3x2-5 的切点坐标,显然直线的斜率为-3,由于所求的切线平行于直线,故其斜率 k=-3,又 k=y=3x2+6x,于是有 3x2+6x=-3, 则 3(x+1) 2=0, 即 x=-1 将 x=-1 代入曲线方程,有 y=(-1)3+3(-1)2-5=-3 故切点坐标为(-1,-3)从而所求直线方程为 y+3=-3(x+1), 即 3x+y+6=012. (分数:4.00)填空项 1:_ (正确答案: )解析:分析 利用对称性,知第一项积分为零 * *13.设三阶常系数线性

    12、齐次微分方程具有特解 y1=ex,y 2=2xex,y 3=3e-x,则该方程为_(分数:4.00)填空项 1:_ (正确答案:y“-y“-y+y=0)解析:分析 由题设知其特征方程的特征根:为 r1=r2=1,r 3=-1 特征方程:(r-1) 2(r+1)=O, 即 r 3-r2-r+1=0, 故所求的齐次微分方程为 y“-y“-y+y=014.设三阶矩阵 A 有特征值 (分数:4.00)填空项 1:_ (正确答案: )解析:分析 由设,知 * 于是 * 从而 * 故当 D=2 2,- 1,3 3,有 *三、解答题(总题数:9,分数:89.00)15. (分数:10.00)_正确答案:(令

    13、 t=x-u,dt=-du, 两边对 x 求导,得 )解析:分析 注意到*为一函数,欲从中求出 f(x),应求导化简,又因 f 中含 x-u 故先要作变量替换16. (分数:10.00)_正确答案:( )解析:分析 化成极坐标形式,*17.设函数 f(x)在(-,0)内可微, (分数:10.00)_正确答案:(因 由拉格朗日定理,有 )解析:分析 根据极限定义及微分中值定理证明18. (分数:10.00)_正确答案:(任取参数 t0,对应于曲线上的点 M,在该点处曲线的切线斜率为 故在点 M 处曲线的法线方程为 即 xcost 0+ysint0=a 将圆 x2+y2=a2写为参数式 设 t0对

    14、应于圆上的点 N,在 N 处圆的切线斜率为 故切线方程为 )解析:分析 已知曲线为圆的渐伸线,即证其法线为圆的切线先求出法线,再把圆的方程写为参数式,求出对应点的切线,比较可知,曲线的法线即圆的切线19.求曲线 y=lnx 在区间(2,6)内的一条切线,使该切线与直线 x=2,x=6 及曲线 y=lnx 所围图形的面积最小(分数:10.00)_正确答案:(曲线为 y=lnx, 在点(t,lnt)曲线的切线方程为 整理得切线方程 切线与直线 x=2,x=6 及曲线 y=lnx 所围图形的面积为 故切线方程为 )解析:分析 先求出在(2,6)内曲线上任意一点(t,lnt)处的切线,然后用定积分表示

    15、该切线与直线x=2,x=6 及曲线 y=lnx 所围图形的面积,剩下的问题就是求最小值,最后写出相应的切线方程20.设 f(x)在0,1上具有二阶连续导数,且 f(0)=f(1)=0,当 x(0,1),f(x)0证明: (分数:10.00)_正确答案:(由题设,知|f(x)|在0,1上有最大值,记为|f(x 0)|,x 0(0,1) 由拉格朗日微分中值定理,有 )解析:分析 利用连续函数性质及拉格朗日微分中值定理证之21.设函数 f(x)处处可导, 试证: (分数:10.00)_正确答案:(先证x n单调 由 xn+1-xn=f(xn)-f(xn-1)=(xn-xn-1)f( n),其中 n在

    16、 xn与 xn-1之间 又由题设,f(x)处处可导,且 ,于是知 f( n)0,从而(x n+1-xn)与(x n-xn-1)同号,故x n单凋 再证x n有界 综上所述知,x n单调有界故由极限存在准则知, 存在 设 ,因 f(x)处处可导,故 f(x)处处连续,而 xn=f(xn-1),于是有 )解析:分析 利用极限存在准则证明(分数:11.00)_正确答案:(A 与 B 相似,则 2,6 都为 A 的特征值由|A-6E|=0,得 x=5)解析:_正确答案:(=2 时,由(A-2E)X=0 得 x1=-x2+x3,则可取 =6 时,由(A-6E)X=0,得 ,则可取 于是可逆阵 )解析:分

    17、析 矩阵 A 与对角阵相似,则对角阵的对角线上的元素即为 A 的特征值。若 n 阶矩阵 A=( 1, 2, n-1, n)的前 n-1 个列向量线性相关,后 n-1 个列向量线性无关,= 1+ 2+ n,证明:1.方程组 AX= 必有无穷多解;(分数:8.00)_正确答案:(A=( 1, 2, n-1, n)的前 n-1 个列向量线性相关,则 1, 2, n-1, n线性相关又后 n-1 个列向量线性无关,故 1可由后 n-1 个列向量线性表示,从而 r(A)=n-1又= 1+ 2+ n,则 r(A|)=r(A)=n-1n 故方程组 AX= 必有无穷多解)解析:_正确答案:(由 1, 2, n-1线性相关,则存在不全为零的数 1, 2, n-1,使得 1 1+ 2 2+ n-1 n-1+0 n=0, 即( 1, 2, n-1,0) T为 AX=0 的解,又由 = 1+ 2+ n知(1,1,1) T为 AX= 的一个特解 据 r(A)=n-1,得 AX= 的通解为 )解析:分析 AX= 解的情况: * 其中 n 为未知数个数。


    注意事项

    本文(【考研类试卷】考研数学二-124及答案解析.doc)为本站会员(appealoxygen216)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开