欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    【学历类职业资格】专升本高等数学(一)-一元函数微分学(二)及答案解析.doc

    • 资源ID:1369868       资源大小:124KB        全文页数:7页
    • 资源格式: DOC        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    【学历类职业资格】专升本高等数学(一)-一元函数微分学(二)及答案解析.doc

    1、专升本高等数学(一)-一元函数微分学(二)及答案解析(总分:70.02,做题时间:90 分钟)一、B选择题/B(总题数:5,分数:10.00)1.设函数 f(x)在 x=x0处可导,且 f(x0)=2,则极限 =_A B2 C- (分数:2.00)A.B.C.D.2.设 f(0)=0,且 f(0)存在,则 =_ Af(x) Bf(0) Cf(0) D (分数:2.00)A.B.C.D.3.设 f(x)在 x0处不连续,则_Af(x 0)必存在 Bf(x 0)必不存在C f(x)必存在 D (分数:2.00)A.B.C.D.4.设函数 f(x)= ,则 f(x)等于_ A-2 B-2x C2 D

    2、2x (分数:2.00)A.B.C.D.5.椭圆 x2+2y2=27 上横坐标与纵坐标相等的点处的切线斜率为_A-1 B C (分数:2.00)A.B.C.D.二、B填空题/B(总题数:10,分数:20.00)6.设 (分数:2.00)填空项 1:_7.设函数 f(x)在 x=2 处可导,且 f(2)=1,则极限 (分数:2.00)填空项 1:_8.设曲线 y=x2-3x+4 在点 M 处的切线斜率为-1,则点 M 的坐标为 1(分数:2.00)填空项 1:_9.y= ,则 (分数:2.00)填空项 1:_10.设 y=xe+ex+lnx+ee,则 y= 1(分数:2.00)填空项 1:_11

    3、.设 y=x22x+ (分数:2.00)填空项 1:_12.设 f(x)=ln(1+x2),则 f“(-1)= 1(分数:2.00)填空项 1:_13.设 f(x)=sinx+lnx,则 f“(1)= 1(分数:2.00)填空项 1:_14.设 y=esinx,则 dy= 1(分数:2.00)填空项 1:_15.设 y= (分数:2.00)填空项 1:_三、B解答题/B(总题数:4,分数:40.00)求下列由参数方程所确定的函数的导数(分数:8.01)(1).设 ,求 (分数:2.67)_(2).设 y=f(x)由参数方程 x=cost,y=sint-tcost 确定,求 (分数:2.67)_

    4、(3).设 x= ,y= ,求 (分数:2.67)_求下列隐函数的导数(分数:8.01)(1).设由方程 xy2-exy+2=0 确定的隐函数 y=f(x),求 (分数:2.67)_(2).设 y=f(x)由方程 y3=x+arccos(xy)确定,求 (分数:2.67)_(3).设 y=f(x)由方程 exy+ylnx-cos2x=0 确定,求 (分数:2.67)_用对数求导法求下列函数的导数(分数:12.00)(1).设 y=xsinx,求 y(分数:3.00)_(2).设函数 y= (分数:3.00)_(3).设函数 y=arcsinx+xarctanx,求 y(分数:3.00)_(4)

    5、.设函数 (分数:3.00)_求下列函数的高阶导数(分数:12.00)(1).设函数 y=ln(1+x2),求 y“(分数:3.00)_(2).设函数 y=(1+x2)arctanx,求 y“(分数:3.00)_(3).设 f(x)= (分数:3.00)_(4).设函数 y=ln(1+x),求 y(n)(分数:3.00)_专升本高等数学(一)-一元函数微分学(二)答案解析(总分:70.02,做题时间:90 分钟)一、B选择题/B(总题数:5,分数:10.00)1.设函数 f(x)在 x=x0处可导,且 f(x0)=2,则极限 =_A B2 C- (分数:2.00)A.B.C.D. 解析:2.设

    6、 f(0)=0,且 f(0)存在,则 =_ Af(x) Bf(0) Cf(0) D (分数:2.00)A.B. C.D.解析:3.设 f(x)在 x0处不连续,则_Af(x 0)必存在 Bf(x 0)必不存在C f(x)必存在 D (分数:2.00)A.B. C.D.解析:4.设函数 f(x)= ,则 f(x)等于_ A-2 B-2x C2 D2x (分数:2.00)A.B. C.D.解析:5.椭圆 x2+2y2=27 上横坐标与纵坐标相等的点处的切线斜率为_A-1 B C (分数:2.00)A.B. C.D.解析:二、B填空题/B(总题数:10,分数:20.00)6.设 (分数:2.00)填

    7、空项 1:_ (正确答案:*)解析:7.设函数 f(x)在 x=2 处可导,且 f(2)=1,则极限 (分数:2.00)填空项 1:_ (正确答案:1)解析:8.设曲线 y=x2-3x+4 在点 M 处的切线斜率为-1,则点 M 的坐标为 1(分数:2.00)填空项 1:_ (正确答案:(1,2))解析:9.y= ,则 (分数:2.00)填空项 1:_ (正确答案:*)解析:10.设 y=xe+ex+lnx+ee,则 y= 1(分数:2.00)填空项 1:_ (正确答案:*)解析:11.设 y=x22x+ (分数:2.00)填空项 1:_ (正确答案:2x2 x+x22xln2)解析:12.设

    8、 f(x)=ln(1+x2),则 f“(-1)= 1(分数:2.00)填空项 1:_ (正确答案:0)解析:13.设 f(x)=sinx+lnx,则 f“(1)= 1(分数:2.00)填空项 1:_ (正确答案:-(1+sin1))解析:14.设 y=esinx,则 dy= 1(分数:2.00)填空项 1:_ (正确答案:e sinxcosxdx)解析:15.设 y= (分数:2.00)填空项 1:_ (正确答案:*)解析:三、B解答题/B(总题数:4,分数:40.00)求下列由参数方程所确定的函数的导数(分数:8.01)(1).设 ,求 (分数:2.67)_正确答案:(*)解析:(2).设

    9、y=f(x)由参数方程 x=cost,y=sint-tcost 确定,求 (分数:2.67)_正确答案:(*)解析:(3).设 x= ,y= ,求 (分数:2.67)_正确答案:(*)解析:求下列隐函数的导数(分数:8.01)(1).设由方程 xy2-exy+2=0 确定的隐函数 y=f(x),求 (分数:2.67)_正确答案:(*)解析:(2).设 y=f(x)由方程 y3=x+arccos(xy)确定,求 (分数:2.67)_正确答案:(*)解析:(3).设 y=f(x)由方程 exy+ylnx-cos2x=0 确定,求 (分数:2.67)_正确答案:(*)解析:用对数求导法求下列函数的导

    10、数(分数:12.00)(1).设 y=xsinx,求 y(分数:3.00)_正确答案:(*)解析:(2).设函数 y= (分数:3.00)_正确答案:(*)解析:(3).设函数 y=arcsinx+xarctanx,求 y(分数:3.00)_正确答案:(*)解析:(4).设函数 (分数:3.00)_正确答案:(函数 f(x)在点 x=0 处可导,则它在 x=0 处必定连续由于f(0)=e0=1,f(0-0)=*,f(0+0)=*,由函数的点连续的定义可知,f(0-0)=f(0+0)=f(0),可得 a=1又函数 f(x)在点 x=0 处可导,则函数 f(x)在点 x=0 处的左导数 f-(x0)和右导数 f+(x0)都存在且相等,由于*因为 f-(x0)=f+(x0),于是可得 b=1)解析:求下列函数的高阶导数(分数:12.00)(1).设函数 y=ln(1+x2),求 y“(分数:3.00)_正确答案:(*)解析:(2).设函数 y=(1+x2)arctanx,求 y“(分数:3.00)_正确答案:(*)解析:(3).设 f(x)= (分数:3.00)_正确答案:(f“(x)=*)解析:(4).设函数 y=ln(1+x),求 y(n)(分数:3.00)_正确答案:(*)解析:


    注意事项

    本文(【学历类职业资格】专升本高等数学(一)-一元函数微分学(二)及答案解析.doc)为本站会员(cleanass300)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开